Effect of drainage and sequential filling on the behavior of backfill in mine stopes

2014 ◽  
Vol 51 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Nawfal El Mkadmi ◽  
Michel Aubertin ◽  
Li Li

Underground backfilling offers significant economic and environmental advantages to mining operations. There is however a limited knowledge and understanding of how the backfill behaves within mine stopes, which creates some concern regarding the risk of accidents with potentially serious consequences. It is thus important to investigate further the response of backfill to ensure safe working conditions and optimize the filling sequence. This paper presents key results from a numerical study aimed at analyzing the hydrogeotechnical response of backfill in a narrow vertical stope. The simulations illustrate how stresses are influenced by stope geometry, water drainage, and filling rate. Three main cases are presented here to illustrate these effects; namely, (i) simulation of dry (or drained) backfill, (ii) a rapidly filled stope with progressive drainage and consolidation, and (iii) sequential backfill placement with different filling rates. The third case includes a simulation with evolving properties due to the binder added to the backfill. The results from the numerical analyses show that arching effects develop within narrow backfilled stopes because of the stiffness contrast between the rock and the fill material. This can produce a significant reduction of the stresses (horizontal and vertical) in comparison with the overburden pressure. The simulation results also show the development of excess pore-water pressures after the placement of the saturated backfill within the stope. Drainage tends to reduce these pressures and increase the frictional stresses along the rock walls. The sequentially filled stope simulations show that a rapid filling rate produces much higher total stresses and excess pore-water pressures, compared to slower rates. The simulation of the cemented backfill, with evolving properties, indicates that the progressive changes can have a significant effect on the total and effective stresses in the stope. A discussion follows on the implications of these results.

1986 ◽  
Vol 32 (110) ◽  
pp. 20-30 ◽  
Author(s):  
E. M. Shoemaker

AbstractSubglacial hydrology is investigated for an ice sheet where the substrate consists of a deformable aquifer resting on an aquitard. If sliding velocities are low or absent, subglacial melt-water drainage is dominated by drainage through the aquifer to water channels. Drainage along the bed is negligible. Efficient melt-water drainage requires that a system of subglacial water channels exists; otherwise, pore-water pressures will exceed the overburden pressure. In general, aquifer deformation near (away from) the terminus is most likely to occur during the winter (summer). The effect of short-term high channel pressures is, in general, not critical to aquifer deformation because the pressure pulse does not propagate far into the aquifer. (For aquifers of high permeability, short periods of high channel pressures constitute the most critical condition.) Aquifer deformation at the terminus is very likely to occur if the terminus ice slope exceeds tan ϕ, where ϕ is the Coulomb friction angle of the aquifer material. Upwelling of basal melt water near the terminus will normally cause soil dilation if the aquifer has a low permeability (e.g. till). Maximal profiles are computed corresponding to various aquifer materials using channel spacings which provide efficient drainage. (A maximal profile is the highest ice profile which the aquifer can sustain without deformation.) In general, maximal profiles lie well above observed profiles (such as h(x) = 3x1/2 (m)) except near the terminus. However, if channel spacings are sufficiently large, pore-water pressures are increased and maximal profiles can lie well below h(x) = 3x1/2.


1986 ◽  
Vol 32 (110) ◽  
pp. 20-30 ◽  
Author(s):  
E. M. Shoemaker

AbstractSubglacial hydrology is investigated for an ice sheet where the substrate consists of a deformable aquifer resting on an aquitard. If sliding velocities are low or absent, subglacial melt-water drainage is dominated by drainage through the aquifer to water channels. Drainage along the bed is negligible. Efficient melt-water drainage requires that a system of subglacial water channels exists; otherwise, pore-water pressures will exceed the overburden pressure. In general, aquifer deformation near (away from) the terminus is most likely to occur during the winter (summer). The effect of short-term high channel pressures is, in general, not critical to aquifer deformation because the pressure pulse does not propagate far into the aquifer. (For aquifers of high permeability, short periods of high channel pressures constitute the most critical condition.) Aquifer deformation at the terminus is very likely to occur if the terminus ice slope exceeds tanϕ, whereϕis the Coulomb friction angle of the aquifer material. Upwelling of basal melt water near the terminus will normally cause soil dilation if the aquifer has a low permeability (e.g. till). Maximal profiles are computed corresponding to various aquifer materials using channel spacings which provide efficient drainage. (A maximal profile is the highest ice profile which the aquifer can sustain without deformation.) In general, maximal profiles lie well above observed profiles (such ash(x) = 3x1/2(m)) except near the terminus. However, if channel spacings are sufficiently large, pore-water pressures are increased and maximal profiles can lie well belowh(x) = 3x1/2.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
El Mustapha Jaouhar ◽  
Li Li

The pore water pressures (PWPs) and total stresses during the placement of a slurried backfill in underground mine stopes are the key parameters for the design of barricades, built to retain the backfill in the stopes. They can be affected by the drainage and consolidation of the backfill. Over the years, several studies have been reported on the pressure and stresses in backfilled stopes by accounting for the drainage and consolidation. Most of them focused on the pressure and stresses in the stopes, few specifically on the barricades. The effect of the number of draining holes commonly installed through the barricade has never been studied. In this paper, the influence of hydraulic properties and filling rate of the backfill, stope size, barricade location, and number of draining holes is systematically investigated with numerical simulations. The results show that the stresses in the backfilled stope and on the barricade largely depend on the filling rate, hydraulic conductivity, and Young’s modulus of the backfill. The draining holes can significantly decrease the PWP, but only slightly the total stresses on the barricades in short term.


1980 ◽  
Vol 17 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Luis E. Vallejo

A new approach to the stability analysis of thawing slopes at shallow depths, taking into consideration their structure (this being a mixture of hard crumbs of soil and a fluid matrix), is presented. The new approach explains shallow mass movements such as skin flows and tongues of bimodal flows, which usually take place on very low slope inclinations independently of excess pore water pressures or increased water content in the active layer, which are necessary conditions in the methods available to date to explain these movements.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Huang ◽  
Kejun Wen ◽  
Dongsheng Li ◽  
Xiaojia Deng ◽  
Lin Li ◽  
...  

The unloading creep behavior of soft soil under lateral unloading stress path and excess pore water pressure is the core problem of time-dependent analysis of surrounding rock deformation under excavation of soft soil. The soft soil in Shenzhen, China, was selected in this study. The triaxial unloading creep tests of soft soil under different initial excess pore water pressures (0, 20, 40, and 60 kPa) were conducted with the K0 consolidation and lateral unloading stress paths. The results show that the unloading creep of soft soil was divided into three stages: attenuation creep, constant velocity creep, and accelerated creep. The duration of creep failure is approximately 5 to 30 mins. The unloading creep behavior of soft soil is significantly affected by the deviatoric stress and time. The nonlinearity of unloading creep of soft soil is gradually enhanced with the increase of the deviatoric stress and time. The initial excess pore water pressure has an obvious weakening effect on the unloading creep of soft soil. Under the same deviatoric stress, the unloading creep of soft soil is more significant with the increase of initial excess pore water pressure. Under undrained conditions, the excess pore water pressure generally decreases during the lateral unloading process and drops sharply at the moment of unloading creep damage. The pore water pressure coefficients during the unloading process were 0.73–1.16, 0.26–1.08, and 0.35–0.96, respectively, corresponding to the initial excess pore water pressures of 20, 40, and 60 kPa.


1985 ◽  
Vol 22 (1) ◽  
pp. 69-78 ◽  
Author(s):  
J. Graham ◽  
V. C. S. Au

Weathering processes such as softening and freeze–thaw cycling affect the properties of clays. Care must therefore be taken when selecting strength and compressibility parameters for analysis of natural slopes, compacted clay embankments, and trench excavations in which significant proportions of the cross section can be affected by climatic weathering.Samples of plastic Lake Agassiz clay from Winnipeg were consolidated anisotropically in the laboratory to axial stresses less than or equal to the in situ effective overburden pressure. They were therefore all overconsolidated with respect to the field preconsolidation pressure. The samples were then loaded under drained or undrained conditions along steeply rising stress paths in p′, q stress space. One group of samples was tested immediately to identify the "undisturbed" behavior, a second group was subjected to freeze–thaw cycles, and a third group allowed to swell freely before testing.The freeze–thaw cycling produced increased compressibility and pore-water pressures, and reduced strengths at low stresses compared with the behavior of undisturbed clay. Freezing also caused the development of a clearly defined fissure structure. Softening at low stresses with access to water produced less marked effects. Key words: clay, undisturbed, freeze–thaw, softening, strength, yielding, pore-water pressures.


Sign in / Sign up

Export Citation Format

Share Document