filling sequence
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chui Ming Gemmy Cheung ◽  
Kelvin Yi Chong Teo ◽  
Sai Bo Bo Tun ◽  
Joanna Marie Busoy ◽  
Veluchamy A. Barathi ◽  
...  

AbstractTo investigate the correlation between posterior pole choroidal blood flow evaluated with digital subtraction indocyanine green angiography and enface optical coherence tomography angiography (OCTA). Imaging in animal study. The anatomy of 2 cynomogulus monkeys was studied. Each monkey was given a 0.75 mg/kg injection of indocyanine green in the saphenous vein. The dynamic angiographic filling sequence was recorded at 15 frames per second using the Heidelberg Spectralis. After image registration, sequential frame subtraction was used to image the dye front moving through the choroid. The OCTA was obtained by frame averaging nine separate choriocapillaris slab flow images obtained from the Zeiss Plex Elite 9000. Posterior pole choriocapillaris filling pattern in relation to the choriocapillaris anatomy as imaged by OCTA. In the posterior pole, the choriocapillaris fills in the pattern of discrete units with variable sizes and shapes. The cycle of dye filling begins in the peripapillary area and progresses toward the periphery in a wavelike manner. This filling pattern repeats in a cyclical manner, consistent with the cardiac cycle. OCTA shows a uniform mesh of vessels. While OCTA shows a uniform meshwork appearance of the choriocapillaris, the dynamic dye angiography suggests an irregular configuration of functional units partitioned by pressure gradients as opposed to structural boundaries. Disturbance of local perfusion pressure within choroidal vasculature may result in abnormal flow patterns, which could be evaluated in the clinic using commercially available equipment.


Author(s):  
Felicitas V. Muth ◽  
Robert Wirth ◽  
Wilfried Kunde

Abstract Voluntary actions and causally linked sensory stimuli are perceived to be shifted towards each other in time. This so-called temporal binding is commonly assessed in paradigms using the Libet Clock. In such experiments, participants have to estimate the timing of actions performed or ensuing sensory stimuli (usually tones) by means of a rotating clock hand presented on a screen. The aforementioned task setup is however ill-suited for many conceivable setups, especially when they involve visual effects. To address this shortcoming, the line of research presented here establishes an alternative measure for temporal binding by using a sequence of timed sounds. This method uses an auditory timer, a sequence of letters presented during task execution, which serve as anchors for temporal judgments. In four experiments, we manipulated four design factors of this auditory timer, namely interval length, interval filling, sequence predictability, and sequence length, to determine the most effective and economic method for measuring temporal binding with an auditory timer.


Author(s):  
Alessio Scanziani ◽  
Qingyang Lin ◽  
Abdulla Alhosani ◽  
Martin J. Blunt ◽  
Branko Bijeljic

We identify a distinct two-phase flow invasion pattern in a mixed-wet porous medium. Time-resolved high-resolution synchrotron X-ray imaging is used to study the invasion of water through a small rock sample filled with oil, characterized by a wide non-uniform distribution of local contact angles both above and below 90 ° . The water advances in a connected front, but throats are not invaded in decreasing order of size, as predicted by invasion percolation theory for uniformly hydrophobic systems. Instead, we observe pinning of the three-phase contact between the fluids and the solid, manifested as contact angle hysteresis, which prevents snap-off and interface retraction. In the absence of viscous dissipation, we use an energy balance to find an effective, thermodynamic, contact angle for displacement and show that this angle increases during the displacement. Displacement occurs when the local contact angles overcome the advancing contact angles at a pinned interface: it is wettability which controls the filling sequence. The product of the principal interfacial curvatures, the Gaussian curvature, is negative, implying well-connected phases which is consistent with pinning at the contact line while providing a topological explanation for the high displacement efficiencies in mixed-wet media.


2020 ◽  
Author(s):  
Wenya Lyu ◽  
Lianbo Zeng ◽  
Shuangquan Chen ◽  
Lei Tang ◽  
Yunzhao Zhang

<p>Based on cores, image logs and thin sections, five sets of fractures are developed in the study area, where faults are developed. Most of fractures are open without fillings, and some fractures are filled with calcite, quartz, bitumen, pyrite and mud. Fractures are mainly controlled by lithology, mechanical stratigraphy and faults. Based on mutual crosscutting relationships of fractures, mineral filling sequence of fracture fillings, fluid inclusion and carbon-oxygen isotope analysis of calcite fillings in fractures, and quartz spintronic resonance analysis of quartz fillings in fractures, in combination with thermal and burial history, the formation sequence and time of fractures were analyzed. The results show that fractures mainly formed over three period, that is, the late Triassic, Middle to Late Jurassic, and Late Cretaceous to Paleogene. Then,combined with the paleostress evolution and fracture characteristics of the study area, the formation mechanism of fractures was discussed.</p>


2016 ◽  
Vol 16 (12) ◽  
pp. 2473-2484 ◽  
Author(s):  
Nan Zhou ◽  
Meng Li ◽  
Jixiong Zhang ◽  
Rui Gao

Abstract. Coal mines in the western areas of China experience low mining rates and induce many geohazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for this method. Based on the effects of the abutment stress from a single roadway driving task, we designed the distance between roadways and a driving and filling sequence for multiple-roadway driving. By doing so, we found the movement characteristics of the strata with quadratic stabilization for backfill mining during roadway driving. Based on this research, the driving and filling sequence of the 3101 working face in Changxing coal mine was optimized to avoid the superimposed influence of mining-induced stress. According to the analysis of the surface monitoring data, the accumulated maximum subsidence is 15 mm and the maximum horizontal deformation is 0.8 mm m−1, which indicated that the ground basically had no obvious deformation after the implementation of the roadway backfill method at 3101 working face.


2016 ◽  
Author(s):  
Jixiong Zhang ◽  
Meng Li ◽  
Nan Zhou ◽  
Rui Gao

Abstract. Coal mines in the western areas of China experience low mining rates and induce many geo-hazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for this method. Based on the effects of the abutment stress from a single roadway driving task, we designed the distance between roadways and a driving and filling sequence for multiple-roadway driving. By doing so, we found the movement characteristics of the strata with quadratic stabilisation for backfill mining during roadway driving. Based on this research, the driving and filling sequence of the 3101 working face in Changxing coal mine was optimised to avoid the superimposed influence of mining-induced stress. According to the analysis of the surface monitoring data, the accumulated maximum subsidence is 15 mm and the maximum horizontal deformation is 0.8 mm/m, which indicated that the ground basically had no obvious deformation after the implementation of the roadway backfill method at 3101 working face.


2016 ◽  
Vol 2 (4) ◽  
pp. e1501779 ◽  
Author(s):  
Songbo Ni ◽  
Jessica Leemann ◽  
Ivo Buttinoni ◽  
Lucio Isa ◽  
Heiko Wolf

The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature’s complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing “patchy” particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single “molecule” and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to “synthesize” colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template’s shape solely controls the molecule’s geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the “synthesis” of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications.


2015 ◽  
Vol 52 (10) ◽  
pp. 1507-1525 ◽  
Author(s):  
Nooshin Falaknaz ◽  
Michel Aubertin ◽  
Li Li

Backfilling of mine stopes helps provide a safe workplace underground. The interaction between the backfill and surrounding rock mass has to be evaluated to ensure the secure application of backfill. This critical issue has led to much research on the stress state in single (isolated) backfilled stopes. However, the stress distribution in multiple openings that interact with each other has not yet been investigated as thoroughly. In this paper, the authors are using numerical simulations to evaluate the response of two adjacent backfilled stopes created in sequence, with a new assumption that is based on an explicit relationship between Poisson’s ratio and the internal friction angle of the backfill; as shown here, the use of this relationship can significantly modify the stress state in backfilled stopes. The simulation results, presented in terms of stresses, displacements, and strains, illustrate the influence of different parameters including backfill strength, pillar width, stope depth, rock mass stiffness, natural stress state, and excavation and filling sequence. Complementary aspects are also considered. A discussion follows on some of the characteristics and limitations of this investigation.


2015 ◽  
Vol 830-831 ◽  
pp. 53-56
Author(s):  
J. Aneesh Kumar ◽  
K. Krishnakumar ◽  
S. Savithri

Centrifugal casting process is one of the potential manufacturing techniques used for producing functionally graded materials viz., composite materials or metallic materials which have high differences of density among constituents. In this process, the fluid flow plays a major role and understanding the complex flow process is a must for the production of defect-free castings. Since the mold spins at a high velocity and the mold wall being opaque, it is impossible to visualise the flow patterns in real time. Hence, in the present work, the commercial CFD code FLOW-3DTM, has been used to simulate the mold filling sequence for a simple hollow cylindrical casting during vertical centrifugal casting process. Effect of various spinning velocities on the fill pattern during vertical centrifugal casting process is being investigated.


Sign in / Sign up

Export Citation Format

Share Document