Response of suction caissons for tidal current turbine applications in soft clay to monotonic and cyclic vertical loading

2018 ◽  
Vol 55 (4) ◽  
pp. 551-562 ◽  
Author(s):  
Jeff F. Wallace ◽  
Cassandra J. Rutherford

In soft marine clays, suction caissons provide a foundation system for tidal current turbines that further promote the sustainable nature of the system by allowing for their removal at the end of the structure’s design life. When configured as a multipod, the moment loads resulting from the horizontal flow of water will be transferred to the suction caissons as compression–uplift loads on opposing foundation legs. The behavior of a suction caisson in soft clay was investigated at aspect ratios of 1 and 2 under monotonic and cyclic vertical loading applicable to multipod-supported tidal current turbine design. Installation and solely monotonic vertical load tests indicated lower back-calculated adhesion factor, α, values and higher back-calculated bearing capacity factor, Nc, values than design standards recommend. The capacity and stiffness response of the foundation after undergoing cyclic loading was found to be largely dependent on the magnitude of displacement the foundation underwent during cyclic loading. Additionally, a threshold of elastic foundation response was observed during cyclic loading defined by a cyclic displacement amplitude. These results indicate serviceability constraints will be critical in the design of suction caisson foundations for tidal current turbine applications.

Author(s):  
Jun Leng ◽  
Ye Li

In recent years, tidal current energy has gained wide attention for its abundant resource and environmentally friendly production. This study focuses on analyzing dynamic behavior of a three-bladed vertical axis tidal current turbine. The multibody dynamics code MBDyn is used in the numerical simulation. It performs the integrated simulation and analysis of nonlinear mechanical, aeroelastic, hydraulic and control problems by numerical integration. In this study, tidal current turbine is idealized as an assembly of flexible beams including axis of rotation, arms and blades. We firstly conduct a modal analysis on the tidal current turbine and validate the model with the results obtained by ANSYS. The natural frequencies of blades with different size parameters are compared and the corresponding mode shapes are presented. Next, a parametric study was performed to investigate the effect of internal force on the dynamic response. It is concluded that the proposed method is accurate and efficient for structural analysis of tidal current turbine and this flexible multibody model can be used in the fluid-structure-interaction analysis in the future.


2015 ◽  
pp. 601-612
Author(s):  
B Morandi ◽  
F Di Felice ◽  
M Costanzo ◽  
G Romano ◽  
D Dhomé ◽  
...  

2018 ◽  
Vol 198 ◽  
pp. 04004
Author(s):  
P. T. Ghazvinei ◽  
H.H. Darvishi ◽  
A. Bhatia

Marine current power is a significant energy resource which is yet to be exploited for efficient energy production. Malaysia, being a tropical country is rich in renewable sources and tidal power is one of them. In Malaysia, Straits of Malacca is a potential site to establish a tidal current turbine. In the current study, the potential sites of the Straits of Malacca are discussed. A detailed review about the generator suitable for the Straits of Malacca with the associated challenges has also been discussed. Furthermore, the suitable solution for such challenges is proposed. The role of simulation in choosing an appropriate site and generator has also been reviewed. The focus of the study is to propose a generator suitable for the flow characteristics of the Straits of Malacca.


2020 ◽  
Vol 264 ◽  
pp. 114621 ◽  
Author(s):  
Guizhong Deng ◽  
Zhaoru Zhang ◽  
Ye Li ◽  
Hailong Liu ◽  
Wentao Xu ◽  
...  

2020 ◽  
Vol 210 ◽  
pp. 107320 ◽  
Author(s):  
Wang Hua-Ming ◽  
Qu Xiao-Kun ◽  
Chen Lin ◽  
Tu Lu-Qiong ◽  
Wu Qiao-Rui

2020 ◽  
pp. 108396
Author(s):  
Bo Yang ◽  
Kexiang Wei ◽  
Wenxian Yang ◽  
Tieying Li ◽  
Bo Qin

Sign in / Sign up

Export Citation Format

Share Document