scholarly journals Optimum location of geogrid reinforcement in unpaved road

2017 ◽  
Vol 54 (7) ◽  
pp. 1047-1054 ◽  
Author(s):  
S. Hamed Mousavi ◽  
Mohammed A. Gabr ◽  
Roy H. Borden

This study evaluated the optimum location of a reinforcement layer to maximize the efficiency of the reinforcement inclusion in an unpaved road section. The analyses are used to investigate the optimum location of the reinforcement layer within the aggregate base course (ABC) layer, and provide a possible reason for the improvement in performance. A series of three-dimensional finite element method analyses was performed, and the strain and stress response of a reinforced unpaved road section with two different ABC thicknesses was evaluated. The analyses were conducted under cyclic loading with three different radii of the circular loaded area. The embedded depth of reinforcement was varied within the ABC layer. Results indicate that regardless of ABC layer thickness, the surface deformation is minimized when the reinforcement is embedded at a depth equal to half of the radius of the loaded area (D = 0.5r). A higher tension force is mobilized in the reinforcement element when it is placed at D = 0.5r. It is also shown that the required thickness of ABC is reduced when the reinforcement layer is implemented at the depth at which the maximum vertical strain occurs. Depending on the thickness of the ABC layer, the finite element analysis results indicate that the reinforcement layer could be ineffectual if it is placed at the interface between the ABC and the subgrade layer as is traditionally the case.

2014 ◽  
Vol 900 ◽  
pp. 435-444 ◽  
Author(s):  
How Bing Sii ◽  
Gary W. Chai ◽  
Rudi van Staden ◽  
Hong Guan

This paper evaluated an effect of dowel looseness on response of jointed concrete pavement using 3D finite-element analyses of rigid pavement systems that relies on an embedded formulation of a beam element. This embedded element allows the efficient modelling of dowel looseness using nodal contact approach and permits the dowels to be exactly located irrespective of the slab mesh lines. These studies indicate that significant reduction in load transfer efficiency and increase in both slab and base course stresses can be expected due to small gaps varies from 0.25 to 1.25mm between the dowels and the slabs. For the worst case the LTE were reduced to 11.3% and 11.6% respectively for single wheel loading and odd dual wheel loading case while there were voids present at the base course layer for 1.25 cases 4.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sign in / Sign up

Export Citation Format

Share Document