scholarly journals Thirty-Ninth Canadian Geotechnical Colloquium: Unsaturated soil mechanics — bridging the gap between research and practice

2018 ◽  
Vol 55 (7) ◽  
pp. 909-927 ◽  
Author(s):  
Greg A. Siemens

The majority of geoengineering applications occur in the unsaturated (vadose) zone, which is the near-surface region forming the connection between meteorological phenomena above and saturated ground below. The key characteristic of the unsaturated zone is that water is in tension or, put another way, pore-water pressure is negative. Moisture content, as well as most material properties, vary spatially and temporally in the unsaturated zone and coupled processes are common. In geoengineering applications in the vadose zone, unsaturated soils may be present during part or all of their design lives. The question is how or when to consider the unsaturated soils’ principles in an analysis or design. Although most geoengineering applications have an unsaturated component, use of unsaturated soil mechanics in practice lingers behind the prolific number of publications due the uncertain benefit of accounting for unsaturated effects, complexity, and conservativeness among other reasons. The focus of this colloquium is to continue bridging the gap by illustrating unsaturated soils’ principles using application-driven examples in the areas of capillarity as well as flow, strength, and deformation phenomena. As principles of unsaturated soils become more understood and demand increases for incorporating climate change effects in design, use of unsaturated soils’ principles in practice will continue to increase.

1979 ◽  
Vol 16 (1) ◽  
pp. 121-139 ◽  
Author(s):  
D. G. Fredlund

A practical science has not been fully developed for unsaturated soils for two main reasons. First, there has been the lack of an appropriate science with a theoretical base. Second, there has been the lack of an appropriate technology to render engineering practice financially viable.This paper presents concepts that can be used to develop an appropriate engineering practice for unsaturated soils. The nature of an unsaturated soil is first described along with the accompanying stress conditions. The basic equations related to mechanical properties are then proposed. These are applied to practical problems such as earth pressure, limiting equilibrium, and volume change.An attempt is made to demonstrate the manner in which saturated soil mechanics must be extended when a soil is unsaturated. Two variables are required to describe the stress state of an unsaturated soil (e.g., (σ – ua) and (ua – uW). There is a smooth transition from the unsaturated case to the saturated case since the pore-air pressure becomes equal to the pore-water pressure as the degree of saturation approaches 100%. Therefore, the matrix suction (i.e., (ua – uW) goes to 0 and the pore-water pressure can be substituted for the pore-air pressure (i.e., (σ – uW)).The complete volumetric deformation of an unsaturated soil requires two three-dimensional constitutive surfaces. These converge to one two-dimensional relationship for a saturated soil. The shear strength for an unsaturated soil is a three-dimensional surface that reduces to the conventional Mohr–Coulomb envelope for a saturated soil.The manner of applying the volumetric deformation equations and the shear strength equation to practical problems is demonstrated. For earth pressure and limiting equilibrium problems, the unsaturated soil can be viewed as a saturated soil with an increased cohesion. The increase in cohesion is proportional to the matrix suction of the soil. For volume change problems it is necessary to have an indication of the relationship between the various soil moduli.There is a need for further experimental studies and case histories to substantiate the proposed concepts and theories.


2014 ◽  
Vol 501-504 ◽  
pp. 1927-1931
Author(s):  
Guang Ju Wen ◽  
Wen Jie Deng ◽  
Feng Wen

Based on the characteristics of slope failure induced by rainfall, from the point of view of moisture migration and combining unsaturated soil mechanics, the characteristics of moisture migration in slope under different rainfall intensities were analyzed by finite element method. The results reveal that under rainfall, the pore water pressure in slope is in layered distribution, and at the bottom of slope, the pore water pressure is the highest, the top is lower and the middle is the lowest. The volumetric water content is in nonlinear distribution and the degree of nonlinear in unsaturated area is higher than that of the saturated area. The permeability coefficient of soil rises with the increase of rainfall intensity, and when the soil is saturated, its permeability coefficient is saturate permeability coefficient.


1999 ◽  
Vol 36 (1) ◽  
pp. 1-12 ◽  
Author(s):  
C Rampino ◽  
C Mancuso ◽  
F Vinale

This paper describes two new apparatuses recently developed at the Università di Napoli Federico II (Italy) in order to test soils under unsaturated conditions. The related experimental procedures and the first results obtained on a dynamically compacted silty sand are also discussed. The devices mentioned are a Bishop and Wesley stress-path cell and a Wissa oedometer, modified to control matric suction and to measure all the stress-strain variables relevant to unsaturated soil mechanics. Specific experimental procedures were established to perform tests under general conditions and were carefully verified during several tests. Using the triaxial cell, isotropic and anisotropic compression stages were carried out under constant suction levels of 0, 100, 200, and 300 kPa. Furthermore, two deviator stages were performed following different stress paths and water drainage conditions. Using the oedometer, an additional suction level (400 kPa) was investigated during compression tests driven up to 5 MPa of vertical net stress (sigmav - ua). This research is a part of a major project in progress at the Dipartimento di Ingegneria Geotecnica of Naples; it is aimed at the experimental analysis of the behaviour of several dynamically compacted soils and at the numerical modelling of boundary problems related to earth structures.Key words: unsaturated soils, equipment layout, silty sand, matric suction.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 423
Author(s):  
Alfrendo Satyanaga ◽  
Martin Wijaya ◽  
Qian Zhai ◽  
Sung-Woo Moon ◽  
Jaan Pu ◽  
...  

Tailing dams are commonly used to safely store tailings without damaging the environment. Sand tailings (also called Sediment tailings) usually have a high water content and hence undergo consolidation during their placement. As the sediment tailings are usually placed above the ground water level, the degree of saturation and permeability of the sediment tailing is associated with the unsaturated condition due to the presence of negative pore-water pressure or suction. Current practices normally focus on the analyses saturated conditions. However, this consolidation process requires the flow of water between saturated and unsaturated zones to be considered. The objective of this study is to investigate the stability and consolidation of sediment tailings for the construction of road pillars considering the water flow between saturated and unsaturated zones. The scope of this study includes the unsaturated laboratory testing of sediments and numerical analyses of the road pillar. The results show that the analyses based on saturated conditions overestimate the time required to achieve a 90% degree of consolidation. The incorporation of the unsaturated soil properties is able to optimize the design of slopes for road pillars into steeper slope angles.


1978 ◽  
Vol 15 (3) ◽  
pp. 313-321 ◽  
Author(s):  
D. G. Fredlund ◽  
N. R. Morgenstern ◽  
R. A. Widger

The shear strength of an unsaturated soil is written in terms of two independent stress state variables. One form of the shear strength equation is[Formula: see text]The transition from a saturated soil to an unsaturated soil is readily visible. A second form of the shear strength equation is[Formula: see text]Here the independent roles of changes in total stress σ and changes in pore-water pressure uw are easily visualized.Published research literature provides limited data. However, the data substantiate that the shear strength can be described by a planar surface of the forms proposed. A procedure is also outlined to evaluate the pertinent shear strength parameters from laboratory test results.


2000 ◽  
Vol 37 (5) ◽  
pp. 963-986 ◽  
Author(s):  
Delwyn G Fredlund

The implementation of unsaturated soil mechanics into geotechnical engineering practice requires that there be a paradigm shift from classical soil mechanics methodology. The primary drawback to implementation has been the excessive costs required to experimentally measure unsaturated soil properties. The use of the soil-water characteristic curve has been shown to be the key to the implementation of unsaturated soil mechanics. Numerous techniques have been proposed and studied for the assessment of the soil-water characteristic curves. These techniques range from direct laboratory measurement to indirect estimation from grain-size curves and knowledge-based database systems. The soil-water characteristic curve can then be used for the estimation of unsaturated soil property functions. Theoretically based techniques have been proposed for the estimation of soil property functions such as (i) coefficient of permeability, (ii) water storage modulus, and (iii) shear strength. Gradually these estimations are producing acceptable procedures for geotechnical engineering practices for unsaturated soils. The moisture flux ground surface boundary condition is likewise becoming a part of the solution of most problems involving unsaturated soils. The implementation process for unsaturated soils will still require years of collaboration between researchers and practicing geotechnical engineers.Key words: unsaturated soil mechanics, soil suction, unsaturated soil property functions, negative pore-water pressure, matric suction, soil-water characteristic curve.


2000 ◽  
Vol 22 ◽  
Author(s):  
L. J. Wang ◽  
M. Zhang

In drought-prone and semiarid areas, the groundwater table is deep and the soils are at an unsaturated state because of evaporation or transpiration. The negative pore water pressure or matric suction (ua-uw) is an important property of unsaturated soils that are situated above the groundwater table. In the conditions of rainfall, ground seepage, or drainpipe leakage, the matric suction will decrease with the increase of the degree of saturation, and the soils will lose their part of shear strength, which is the main reason why many unsaturated soil slopes become unstable. This paper discusses the engineering properties of unsaturated soils. Following the limit equilibrium principle, the unsaturated soil slopes are evaluated by applying the slice method.


Sign in / Sign up

Export Citation Format

Share Document