Water retention characteristics of iron ore fines

2020 ◽  
Vol 57 (9) ◽  
pp. 1427-1437 ◽  
Author(s):  
Hailong Wang ◽  
Junichi Koseki ◽  
Tomoyoshi Nishimura

Evaluations of water retention characteristics of typical iron ore fines (IOF) were presented, which was part of experimental works for the estimation of liquefaction potential of IOF heaps. The water retention tests were conducted in a suction range from 0.1 to 106 kPa on two IOFs and two artificial soils with various testing techniques. It is observed that water retention characteristic curves of one IOF (IOF-B) converge in terms of the relationship between suction (S) and water content (w) regardless densities of specimens when S exceeds a threshold value (Sth). Based on this finding, water retention characteristics are divided into density and materials affected zones. It is also found that IOFs generally have higher water retention ability than the two artificial soils, from which discussion is made on the effect of specific surface area and mineralogy on water retention characteristics of IOF. Finally, water retention characteristics are linked to compaction curves, from which, with the consideration that degree of saturation at peaks of compaction curves is relatively constant, a safety margin of a recently proposed regulation for maritime transportation of IOF is discussed.

2015 ◽  
Vol 52 (12) ◽  
pp. 2067-2076 ◽  
Author(s):  
Jean-Marie Konrad ◽  
Marc Lebeau

A number of investigations have shown that the shear strength of unsaturated soils can be defined in terms of effective stress. The difficulty in this approach lies in quantifying the effective stress parameter, or Bishop’s parameter. Although often set equal to the degree of saturation, it has recently been suggested that the effective stress parameter should be related to an effective degree of saturation, which defines the fraction of water that contributes to soil strength. A problematic element in this approach resides in differentiating the water that contributes to soil strength from that which does not contribute to soil strength. To address this difficulty, the paper uses theoretical considerations and experimental observations to partition the water retention function into capillary and adsorptive components. Given that the thin liquid films of adsorbed water should not contribute to effective stress, the effective stress parameter is solely related to the capillary component of water retention. In sample calculations, this alternative effective stress parameter provided very good agreement with experimental data of shear strength for a variety of soil types.


Author(s):  
Vitalis Kibiwott Too ◽  
Christian Thine Omuto ◽  
Elijah Kipngetich Biamah ◽  
John Paul Obiero

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saprativ Basu ◽  
Arijit Chakrabarty ◽  
Samik Nag ◽  
Kishore Behera ◽  
Brati Bandyopadhyay ◽  
...  

Purpose The dryer feed chute of the pellet plant plays an important role in the pelletizing process. The chute discharges sticky and moist iron ore fines (<1 mm) to the inline rotary dryer for further processing. Since the inception of the installation of the dryer feed chute, the poor flowability of the feed materials has caused severe problems such as blockages and excessive wear of chute liners. This leads to high maintenance costs and reduced lifetime of the liner materials. Constant housekeeping is needed for maintaining the chute and reliable operation. The purpose of this study is to redesign the dryer feed chute to overcome the above challenges. Design/methodology/approach The discrete element method (DEM) has been used to model the flow of cohesive materials through the transfer chute. Physical experiments have been performed to understand the most severe flow conditions. A DEM material model is also developed for replicating the worst-case material condition. After identifying the key problem areas, concept designs were proposed and simulated to assess the design improvements to increase the reliability of chute operation. Findings Flow simulations correlated well with the existing flow behavior of the iron ore fines inside the chute. The location of the problematic areas has been validated with that of the previously installed chute. Subsequently, design modifications have been proposed. This includes modification of deflector plate and change in slope and cross-section of the chute. DEM simulations and analysis were conducted after incorporating these design changes. A comparison in the average velocity of particle and force on chute wall shows a significant improvement using the proposed design. Originality/value Method to calibrate DEM material model was found to provide accurate prediction and modeling of the flow behavior of bulk material through the real transfer chute. DEM provided greater insight into the performance of the chute especially modeling cohesive materials. DEM is a valuable design tool to assist chute designers troubleshoot and verify chute designs. DEM provides a greater ability to model and assess chute wear. This technique can help in achieving a scientific understanding of the flow properties of bulk solids through transfer chute, hence eliminate challenges, ensuring reliable, uninterrupted and profitable plant operation. This paper strongly advocates the use of calibrated DEM methodology in designing bulk material handling equipment.


Sign in / Sign up

Export Citation Format

Share Document