First report of Phyllactinia chubutiana, nom. cons. on Vallesia glabra (Apocynaceae) in Mexico

Botany ◽  
2021 ◽  
Author(s):  
Rubén Félix-Gastélum ◽  
Karla Yeriana Leyva-Madrigal ◽  
Francisco Roberto Quiroz-Figueroa ◽  
Norma Rodriguez-Mora ◽  
Ignacio Eduardo Maldonado-Mendoza ◽  
...  

A new record of the powdery mildew Phyllactinia chubutiana, nom. cons. (= Oidium insolitum, Ovulariopsis insolita) was documented on pearl berry (Vallesia glabra). No teleomorph was observed. This novel record was identified as a member of Ovulariopsis based on the morphological characteristics of the anamorph (hyphae, conidiophores and conidia), and its hemi-endophytic mycelium in V. glabra correspond to P. chubutiana, nom. cons. A Phyllactinia-specific primer pair was designed for the ITS region of the nuclear rDNA. Phylogenetic analyses confirmed the identity of the powdery mildew specimens found in V. glabra in Sinaloa, Mexico. This is the first ever report of this powdery mildew in V. glabra, and the second report world-wide on a member of the Apocynaceae.

Botany ◽  
2020 ◽  
Vol 98 (4) ◽  
pp. 185-195 ◽  
Author(s):  
R. Gregorio-Cipriano ◽  
D. González ◽  
R. Félix-Gastélum ◽  
S. Chacón

A novel species of powdery mildew, Neoerysiphe sechii sp. nov., has been proposed based on host, morphological characteristics, and gene sequences. The new species was found on chayote (Sechium edule) and a wild species, chayotillo (S. mexicanum), in Veracruz, Mexico. This novel species was identified as a member of Neoerysiphe, based on the morphological characteristics of the anamorph: catenescent conidia, lobed appressoria, and Striatoidium-type conidia. No teleomorph was observed. Neoerysiphe sechii is distinguished by foot cells that are frequently cylindrical with a slight widening at the base, a feature not observed previously in other species in the genus. An Erysiphales-specific primer was designed for the 5′ end of the ITS region of the nuclear rDNA. Independent and concatenated phylogenetic analyses with our rDNA sequences and sequences available in GenBank for Neoerysiphe spp. confirmed that the powdery mildew specimens found in Sechium spp. form an independent and strongly supported lineage. This is the first report of a Neoerysiphe species causing powdery mildew on members of Cucurbitaceae, and it is the second species reported from Mexico after N. cumminsiana. Neoerysiphe sechii is found on cultivated and endemic hosts in Mexico, suggesting that the fungus itself may be endemic.


Botany ◽  
2021 ◽  
Author(s):  
Rubén Félix-Gastélum ◽  
Karla Yeriana Leyva-Madrigal ◽  
Francisco Roberto Quiroz-Figueroa ◽  
Bertha Alicia Mora-Carlón ◽  
Guadalupe Arlene Mora-Romero

We report the powdery mildew Golovinomyces ambrosiae for the first time on silverleaf nightshade (Solanum azureum), a host plant endemic to northern Sinaloa and southern Sonora, Mexico. No teleomorph was observed, requiring the fungal species to be identified based on morphological characteristics of the anamorph. Phylogenetic analyses of the ITS region and the partial sequence of the β-tubulin gene from four specimens confirmed the identity of the species. To our knowledge, this is the first report of G. ambrosiae on S. azureum in Mexico and worldwide.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1188-1188 ◽  
Author(s):  
J.-G. Tsay ◽  
R.-S. Chen ◽  
H.-L. Wang ◽  
W.-L. Wang ◽  
B.-C. Weng

Powdery mildew can be found in most papaya (Carica papaya L.) fields during the winter and spring seasons in Taiwan. It usually causes severe yellowing of the leaf lamina and petiole and serious defoliation. Three types of powdery mildew fungi were isolated from papaya leaves in Chiayi City (23.28°N, 120.28°E) at the beginning of 2008. Conidia of the first one were single, globose, hyaline, and 24 to 36 × 14 to 18 μm (average 30.2 × 15.6 μm) without fibrosin bodies and with straight or occasionally flexuous conidiophores at the base. The second one had short pseudo-chains of two to four conidia which were ellipsoidal to ovoid, hyaline, and 24 to 40 × 12 to 16 μm (average 29.7 × 13.4 μm) without fibrosin bodies. The third type had chains of ellipsoidal conidia that were hyaline, 24 to 28 × 12 to 16 μm (average 26.3 × 14.4 μm) and contained fibrosin bodies. To confirm the identity of the three fungi, the internal transcribed spacer (ITS) region of rDNA was amplified using the primer pairs G1 (5′-TCC GTA GGT GAA CCT GCG GAA GGA T-3′)/Ed2 (5′-CGC GTA GAG CCC ACG TCG GA-3′), G1 (5′-TCC GTA GGT GAA CCT GCG GAA GGA T-3′)/On2 (5′-TGT GAT CCA TGT GAC TGG AA-3′), and S1 (5′-GGA TCA TTA CTG AGC GCG AGG CCC CG-3′)/S2 (5′-CGC CGC CCT GGC GCG AGA TAC A-3′). The alignment of obtained sequences (GenBank Accession Nos. GU358452, 507 bp; GU358451, 580 bp; and GU358450, 455 bp) showed a sequence identity of 100, 99, and 99% with the ITS sequences of Erysiphe diffusa, Oidium neolycopersici, and Podosphaera xanthii (GenBank Accession Nos. FJ378880, EU909694, and GQ927254), respectively. On the basis of morphological characteristics and ITS sequence similarities, these fungi were identified as E. diffusa (Cooke & Peck) U. Braun & S. Takam., O. neolycopersici L. Kiss, and P. xanthii (Castagne) U. Braun & S. Takam., respectively (1,3). Single colonies on papaya leaves infected with powdery mildew were identified in the laboratory and maintained on papaya leaves as inoculum. Pathogenicity was confirmed through inoculations by gently pressing a single colony of each fungus onto leaves of healthy papaya seedlings (cv. Horng-Fe). Five seedlings were inoculated for each fungus and then covered with plastic bags for 2 days. Five noninoculated seedlings served as control. After inoculation, treated plants were maintained separately from the control in different rooms of a greenhouse at 25°C under natural daylight conditions. Seven days after inoculation, typical symptoms of powdery mildew were observed on inoculated plants, but not on noninoculated plants. The same species from diseased lesions following artificial inoculation with each fungus were identified with light microscopy. Papaya was previously described as a host to O. caricae Noack in many tropical and subtropical areas of the world including Taiwan (2). However E. cruciferarum, Golovinomyces cichoracearum, Oidiopsis sicula, O. caricae, O. caricae-papayae, O. caricicola, O. indicum, O. papayae, Ovulariopsis papayae, P. caricae-papayae, P. macularis, P. xanthii, and Streptopodium caricae were reported to infect papaya (4). To our knowledge, this is the first report of papaya powdery mildew caused by E. diffusa and O. neolycopersici in the world and the first report of the three fungi found on papaya in Taiwan. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) H. S. Chien and H. L. Wang. J. Agric. Res. China 33:320, 1984. (3) L. Kiss et al. Mycol. Res. 105:684, 2001. (4) J. R. Liberato et al. Mycol. Res. 108:1185, 2004.


Plant Disease ◽  
2021 ◽  
Author(s):  
José Francisco Díaz-Nájera ◽  
Sergio Ayvar-Serna ◽  
Antonio Mena-Bahena ◽  
Guadalupe Arlene Mora-Romero ◽  
Karla Yeriana Leyva-Madrigal ◽  
...  

Cucurbita argyrosperma, commonly named as winter or cushaw squash, is highly sought for its seeds, which have important uses in culinary arts. During the autumn 2021, powdery mildew-like signs and symptoms were observed on cushaw squash in several commercial fields located in Cocula, Guerrero, Mexico. Signs were initially appeared as whitish powdery patches on both sides of leaves and then covering entire leaves and causing premature senescence. The disease incidence was estimated to be 80% in about 1000 plants in two fields. The mycelium was amphigenous, persistent, white in color, and occurred in dense patches. A voucher specimen was deposited in the Herbarium of the Colegio Superior Agropecuario del Estado de Guerrero under the accession number CSAEG22. For the morphological characterization by light microscopy, fungal structures were mounted in a drop of lactic acid on a glass slide. Microscopic examination showed nipple-shaped hyphal appressoria. Conidiophores (n = 30) were straight, 100 to 190 × 10 to 12 μm and produced 2 to 6 conidia in chains. Foot-cells were cylindrical, 41 to 78 μm long, followed by 1 to 2 shorter cells. Conidia (n = 100) were ellipsoid-ovoid to barrel-shaped, 29.5 to 39.1 × 19.4 to 22.7 μm, and contained conspicuous fibrosin bodies. Germ tubes were produced from a lateral position on conidia. Chasmothecia were not observed during the growing season. The morphological characters were consistent with those of the anamorphic state of Podosphaera xanthii (Braun and Cook 2012). For further confirmation, total DNA was extracted from conidia and mycelia following the CTAB method (Doyle and Doyle 1990), and the internal transcribed spacer (ITS) region and part of the 28S gene were amplified by PCR, and sequenced. The ITS region of rDNA was amplified using the primers ITS5/ITS4 (White et al. 1990). For amplification of the 28S rRNA partial gene, a nested PCR was performed using the primer sets PM3 (Takamatsu and Kano 2001)/TW14 (Mori et al. 2000) and NL1/TW14 (Mori et al. 2000) for the first and second reactions, respectively. Phylogenetic analyses using the Maximum Likelihood method, including ITS and 28S sequences of isolates of Podosphaera spp. were performed and confirmed the results obtained in the morphological analysis. The isolate CSAEG22 grouped in a clade with isolates of Podosphaera xanthii. The ITS and 28S sequences were deposited in GenBank under accession numbers OL423329 and OL423343, respectively. Pathogenicity was confirmed by gently dusting conidia from infected leaves onto ten leaves of healthy C. argyrosperma plants. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 25 to 35 ºC, and relative humidity of 60 to 70%. All inoculated leaves developed similar signs to the original observation after 10 days, whereas control leaves remained symptomless. Microscopic examination of the fungus on inoculated leaves showed that it was morphologically identical to that originally observed on diseased plants, fulfilling Koch’s postulates. Podosphaera xanthii has been previously reported on C. maxima, C. moschata, and C. pepo in Mexico (Yañez-Morales et al. 2009; Farr and Rossman 2021). To our knowledge, this is the first report of P. xanthii causing powdery mildew on C. argyrosperma in Mexico. This pathogen is a serious threat to C. argyrosperma production in Mexico and disease management strategies should be developed.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zong-ming Sheu ◽  
Ming-hsueh Chiu ◽  
Lawrence Kenyon

Mungbean (Vigna radiata L.) is routinely grown in the experimental fields at the headquarters of the World Vegetable Center (23°6'30.88"N, 120°17'51.31"E) for breeding, research and germplasm multiplication. In a spring 2016 mungbean trial, about 50% of the plants were affected with powdery mildew. The white, powdery-like patches first appeared on the upper leaf surfaces, and soon developed to grey patches on both sides of the leaves. Purple to brown discoloration appeared on the underside of the infected leaf. Microscopy examination revealed that the causal organism was not Erysiphe polygoni, which had previously been documented as the powdery mildew pathogen on mungbean in Taiwan (Hartman et al. 1993). The fungus produced typical structures of the powdery mildew Euoidium, anamorph of the genus Podosphaera. The mycelium consisted of septate, flexuous hyphae with indistinct appressoria. The erect conidiophores arising from superficial hyphae varied from straight or slightly curved to curled. Three to ten conidia were borne in long chains with crenate edges. Foot-cells were straight, cylindrical and measured 30 to 52 µm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, with fibrosin bodies, and measured 27 to 33 (mean = 30.4) × 15 to 20 (mean = 16.6) µm. Germ tubes were clavate and occasionally forked, and were produced from the lateral sites of the conidia. No chasmothecia were found in the samples. The morphological characteristics were consistent with P. xanthii (Castagne) U. Braun & Shishkoff (Braun & Cook 2012). To confirm the identity, the internal transcribed spacer (ITS) region of rDNA and partialβ-tubulin gene (TUB2) for the isolate MG3 were amplified with the primers ITS4/ITS5 (White et al. 1990) and BtuF5/BtuR7a (Ellingham et al. 2019), respectively. BLASTn analysis revealed the ITS sequence (MN833717) was 100% identical to many records of P. xanthii whereas the TUB2 sequence (MW363957) was 100% identical to a record of P. fusca (syn. P. xanthii; KC333362) in NCBI GenBank. A pathogenicity test was conducted by dusting conidia from an infected leaf onto six healthy four-week-old mungbean plants (cv ‘Tainan No. 3’). Another three plants were not inoculated and were used as control. All the plants were maintained in a greenhouse at 25 to 28°C. All inoculated plants developed powdery mildew symptoms after 10 days, whereas the control plants remained symptomless. To our knowledge, this is the first report of P. xanthii causing disease on mungbean in Taiwan. P. xanthii also has been reported on mungbean in Thailand (Meeboon et al. 2016), while other records referring to E. polygoni infecting Vigna spp. are from Brazil and Fiji (Farr & Rossman 2020). Although both P. xanthii and E. polygoni have now been reported as causing powdery mildew on mungbean in Taiwan, which species predominates or is more important remains unclear. A comprehensive survey with accurate species identification is required to develop effective management of the disease, particularly for resistance breeding.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 842-842 ◽  
Author(s):  
H. B. Lee

Cocklebur (Xanthium strumarium L., Asteraceae) is an annual broadleaf weed native to the Americas and eastern Asia. The plant is known as one of the worst competitive weeds in soybean fields and also is known to have some phytopharmacological or toxicological properties. In October 2011, a powdery mildew disease was observed on cocklebur growing in a natural landscape at Geomun Oreum located in Jeju Island, South Korea. Initial signs appeared as thin white colonies, which subsequently developed abundant growth on adaxial leaf surfaces. As the disease progressed, brown discoloration extended down infected leaves which withered. Conidia were formed singly and terminally on conidiophores. Primary conidia (20.3 to 28.6 [average 25.1] μm long × 11.1 to 15.2 [14.3] μm wide, n = 30) were ellipsoid with a round apex and truncate base. Conidiophores were straight or slightly curved and 60.1 to 101.7 (97.3) μm long × 8.2 to 13.2 (11.3) μm wide. Chasmothecia were not observed. No fibrosin bodies were observed in the conidia. Morphological characteristics were consistent with descriptions of Podosphaera xanthii (syn. P. fusca) (2,4). To confirm the identity of the causal fungus, the internal transcribed spacer (ITS) region inclusive of 5.8S and 28S rDNA was amplified from white patches consisting of mycelia and conidia on one leaf using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and LR5F (5′-GCTATCCTGAGGGAAAC-3′), and LROR (5′-ACCCGCTGAACTTAAGC-3′) and LR5F primer sets, respectively. The resulting sequences were deposited in GenBank (Accession Nos. JX502022 and JX964999). A NCBI BLASTn search revealed that the rDNA ITS (JX502022) and 28S (JX964999) homologies of isolate EML-XSPW1 represented 99.6% (512/514) and 100% (803/803) identity values with those of P. xanthii (AB040330 and AB462792, respectively). The rDNA ITS and 28S sequence analysis revealed that the causal fungus clustered with P. xanthii (syn. P. fusca), falling into the Xanthii/Fusca phylogenetic group (2,4). Pathogenicity was confirmed through inoculations made by gently pressing infected leaves onto mature leaves of healthy cocklebur plants in the field in August. The six inoculated leaves were sealed in sterilized vinyl bags to maintain humid conditions for 2 days. Seven days after inoculation, symptoms similar to those observed under natural infection were observed on the inoculated plant leaves. No symptoms developed on the uninoculated control plants. A fungal pathogen that was morphologically identical to the fungus originally observed on diseased plants was also observed on inoculated plants. Erysiphe cichoracearum, E. communis, Oidium asteris-punicei, O. xanthimi, P. xanthii, and P. fuliginea have all been reported to cause powdery mildew on cocklebur (1). P. xanthii was first reported on X. strumarium in Russia (3). To our knowledge, this is the first report of powdery mildew on cocklebur caused by P. xanthii in Korea. The powdery mildew pathogen may represent an option for biocontrol of the noxious weed in the near future. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases , December 11, 2012. (2) H. B. Lee. J. Microbiol. 51:1075, 2012. (3) V. A. Rusanov and T. S. Bulgakov. Mikol. Fitopatol. 42:314, 2008. (4) S. Takamatsu et al. Persoonia 24:38, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yu Wan ◽  
Yuan-Zhi Si ◽  
Yang-Chun-Zi Liao ◽  
Li-Hua Zhu

Acer palmatum Thunb. is an important colorful leaf ornamental tree species widely distributed in Japan, Korea and China (Carlos et al. 2016). In October 2019, powdery mildew was observed on leaves of A. palmatum planted at Qixia Mountain Park and the campus of Nanjing Forestry University, Nanjing, Jiangsu, China. The powdery mildew infected and colonized leaves, covering both leaf surfaces with white mycelia, giving affected plants an unsightly appearance. Nearly 17.4% of the plants (87/501) exhibited these signs and symptoms. Fresh specimens were collected and examined for the identification of the pathogen. Photos were taken with a ZEISS Axio Imager A2m microscope and a scanning electronic microscope. Chasmothecia were scattered or aggregated on the upper and lower surfaces of the leaves, blackish brown, oblate, 157.5 to 238.1 × 152.3 to 217.8 μm (n=30), with numerous appendages (100 to 200). Appendages were often (1−) 2 to 3 times branched from the middle of the stalk, uncinate to circinate at the apex, hyaline, aseptate, 30.0 to 70.8 × 4.1 to 8.2 μm (n=30). Asci were 11 to 21 per chasmothecium (n=30), long oval, oval, oblong, with short stalk or sessile, 80.6 ± 8.6 × 40.3 ± 4.0 um (n=30) in length, 6 to 8 spored (n=30). Ascospores were ovoid, 18.2 ± 1.6 × 11.1 ± 1.2 μm (n=30). Microconidiophores were 25 to 50 × 4.0 to 5.5 μm, producing microconidia in chains. Microconidia were ellipsoidal, subglobose, 8.7 ± 0.6 × 7.2 ± 0.6 μm (n=30). Macroconidia were not observed. Based on the morphological characteristics, the fungus was identified as Sawadaea polyfida (C.T. Wei) R.Y. Zheng & G. Q. Chen (Zheng and Yu 1987). To confirm the causative species identity, a representative voucher specimen collected and deposited at Nanjing Forestry University was used for a molecular analysis. Mycelia and conidia were collected from diseased leaves and genomic DNA of the pathogen was extracted and the internal transcribed spacer region (ITS) was amplified with primers ITS1/ITS4 (White et al. 1990). The resulting sequence of 461 bp was deposited in GenBank (accession no. MW255383). BLAST result showed that this sequence fully agreed with a sequence of S. polyfida [AB193381.1 (ITS), identities = 461/461 (100%)]. A maximum likelihood phylogenetic analyses using IQtree v. 1.6.8 with the ITS sequence placed this fungus in the S. polyfida clade. Based on the morphology and phylogeny, the fungus was identified as S. polyfida (Hirose et al. 2005; Zheng and Yu 1987). Pathogenicity was tested through inoculation by gently pressing the naturally infected leaves onto healthy ones of three potted A. palmatum seedlings wih five leaves. Healthy leaves from three other seedlings served as control. Inoculated and control seedlings were placed in separate growth chambers maintained at 20 ± 2°C, 70% humidity, with a 16 h/8 h light/dark period. Symptoms developed 8 days after inoculation. The powdery mildew developing on the inoculated seedlings was sequenced and confirmed as S. polyfida. The control leaves did not develop powdery mildew. S. polyfida has been reported on Acer catalpifolium in China (Zheng and Chen 1980), A. amoenum, A. australe, A. japonicum, A. palmatum, A. shirasawanum, and A. sieboldianum in Japan (Hirose et al. 2005; Meeboonet al. 2015), as well as A. takesimense in Korea (Lee et al. 2011). To the best of our knowledge, this is the first report of powdery mildew caused by S. polyfida on A. palmatum in China. These results form the basis for developing effective strategies for monitoring and managing this disease.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1072-1072 ◽  
Author(s):  
M. J. Park ◽  
S. E. Cho ◽  
J. H. Park ◽  
S. K. Lee ◽  
H. D. Shin

Hydrangea macrophylla (Thunb.) Ser., known as mophead hydrangea, is native to Japan and is used as a potted ornamental or is planted for landscaping in gardens worldwide. In May 2011, powdery mildew occurred on potted mophead hydrangea cv. Emerald plants in polyethylene-film-covered greenhouses in Icheon, Korea. Heavily infected plantings were unmarketable, mainly due to purplish red discoloration and crinkling of leaves. Such powdery mildew symptoms on mophead hydrangea in gardens had been often found in Korea since 2001, and the collections (n = 10) were deposited in the Korea University herbarium (KUS). In all cases, there was no trace of chasmothecia formation. Mycelium was effuse on both sides of leaves, young stems, and flower petals. Appressoria were well developed, lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 70 to 145 × 7.5 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to sub-straight, cylindric, short, and mostly less than 30 μm long. Conidia produced singly were ellipsoid to oval, 32 to 50 × 14 to 22 μm with a length/width ratio of 1.7 to 2.8, lacked fibrosin bodies, and showed angular/rectangular wrinkling of outer walls. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally rounded to subtruncate, 32 to 42 × 14 to 18 μm, and thus generally smaller than the secondary conidia. The morphological characteristics are consistent with previous descriptions of Oidium hortensiae Jørst. (3,4). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F25514 was amplified with primers ITS5 and P3 and directly sequenced. The resulting sequence of 694 bp was deposited in GenBank (Accession No. JQ669944). There was no ITS sequence data known from powdery mildews on Hydrangea. Therefore, this is the first sequence of O. hortensiae submitted to GenBank. Nevertheless, a GenBank BLAST search of this sequence showed >99% similarity with those of Oidium spp. recorded on crassulacean hosts (e.g. GenBank Accession Nos. EU185641 ex Sedum, EU185636 ex Echeveria, and EU185639 ex Dudleya) (2), suggesting their close phylogenetic relationship. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of five healthy potted mophead hydrangea cv. Emerald plants. Five noninoculated plants of the same cultivar served as controls. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Occurrence of powdery mildew disease on mophead hydrangea is circumglobal (1). To our knowledge, this is the first report of powdery mildew disease caused by O. hortensiae on mophead hydrangea in Korea. Powdery mildew infections in Korea pose a serious threat to the continued production of quality potted mophead hydrangea in polyethylene-film-covered greenhouses. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved March 19, 2012, from http://nt.ars-grin.gov/fungaldatabases/ . (2) B. Henricot. Plant Pathol. 57:779, 2008. (3) A. Schmidt and M. Scholler. Mycotaxon 115:287, 2011. (4) S. Tanda. J. Agric. Sci. Tokyo Univ. Agric. 43:253, 1999.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 999-999 ◽  
Author(s):  
J. K. Choi ◽  
B. S. Kim ◽  
S. H. Hong ◽  
S. E. Cho ◽  
H. D. Shin

Ixeris chinensis (Thunb.) Nakai, known as Chinese ixeris, is distributed from Siberia to Japan, including Korea, Taiwan, and China. The whole plant has been used in folk medicine in Asia (4). In Korea, the plants of Chinese ixeris have been gathered and used as a wild root vegetable. During summer to autumn of 2011, Chinese ixeris leaves were found to be heavily infected with a powdery mildew in several locations of Korea. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on both sides of the leaves, leading to drying of the leaves. The same symptoms on Chinese ixeris leaves were continuously observed in 2012 and 2013. Voucher specimens (n = 10) were deposited at Korea University Herbarium (KUS). Hyphal appressoria were moderately lobed or nipple-shaped. Conidiophores arose from the lateral part of the hyphae, measured 100 to 270 × 10 to 12.5 μm, and produced 2 to 6 immature conidia in chains with a sinuate outline. Basal parts of foot-cells in conidiophores were curved. Conidia were barrel-shaped to ellipsoid, measured 26 to 36 × 13 to 19 μm (length/width ratio = 1.7 to 2.4), lacked fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were ovate with conical-obtuse apex and subtruncate base. Germ tubes were produced on the perihilar position of conidia. Chasmothecia were not observed. The morphological characteristics were typical of the Euoidium type anamorph of the genus Golovinomyces, and the fungus measurements and structures were consistent with those of G. sonchicola U. Braun & R.T.A. Cook (1). To confirm the identification, internal transcribed spacer (ITS) region of rDNA sequences from a representative material (KUS-F26212) was amplified using primers ITS5/P3 and sequenced (3). The resulting 416-bp sequence was deposited in GenBank (Accession No. KF819857). A GenBank BLAST search revealed that the isolate showed >99% sequence similarity with those of G. cichoracearum from Sonchus spp. (e.g., AB453762, AF011296, JQ010848, etc.). G. sonchicola is currently confined to G. cichoracearum s. lat. on Sonchus spp., based on molecular sequence analyses (1). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted Chinese ixeris. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 days, whereas the controls remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Powdery mildew infections of I. chinensis associated with Golovinomyces have been known in China (2). To our knowledge, this is the first report of powdery mildew disease caused by G. sonchicola on I. chinensis in Korea. Farming of Chinese ixeris has recently started on a commercial scale in Korea. Though no statistical data are available, we postulate the cultivation area in Korea to be approximately 200 ha, mostly growing without chemical controls. Occurrence of powdery mildews poses a potential threat to safe production of this vegetable, especially in organic farming. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) F. L. Tai. Bull. Chinese Bot. Sci. 2:16, 1936. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) S. J. Zhang et al. J. Nat. Prod. 69:1425, 2006.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
L.-C. Bai ◽  
Z.-M. Cao ◽  
P.-Q. Li ◽  
C. Liang

Prunus hypoleuca (≡ Maddenia hypoleuca), a native plant in China, grows in the Qinling Mountains that lie at the intersection of several forest regions in north, central, and southwest China. In October 2013, P. hypoleuca suffering from heavy powdery mildew infections was found with approximately 75% of the plants affected. The powdery mildew at first appeared as circular to irregular white patches, which subsequently showed abundant hyphal growth on both sides of leaves, leading to the withering of the leaves. A voucher specimen was maintained in the Mycological Herbarium of Northwest A & F University (Accession No. HMNWAFU-CF 2013166). Hyphal appressoria were nipple-shaped or nearly absent. Conidiophores were cylindrical, measured 83 to 110 × 10 to 12.5 μm, and produced two to five immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, cylindrical, and 28 to 62 × 7 to 10 μm. Conidia were hyaline, ellipsoid to ovate, and measured 20 to 32 × 14 to 21 μm (length/width ratio 1.4:1.8). Chasmothecia were scattered or gregarious, depressed globose, and 65 to 112 μm in diameter. Appendages, arising from the upper half of the chasmothecia, usually had two to four dichotomous branches, and were one to three and a half times as long as the chasmothecial diameter. A single ascus in a chasmothecium was subglobose or broadly ellipsoid-ovoid, measured 66 to 86 × 47 to 76 μm and contained six to eight ascospores. The ascospores were ellipsoid-ovoid and 15 to 27 × 12 to 18 μm. The fungus was identified as Podosphaera tridactyla based on its anamorph and teleomorph characteristics (1,2). To confirm the identification, 28S rDNA and the ITS region were amplified. The ITS5/P3 and then PM5/ITS4 primers were used to amplify the ITS region by nested PCR. The primers LSU1/LSU2 were used to amplify the 28S rDNA, and the cloned fragments were sequenced. The 28S rDNA and ITS region sequences were deposited in GenBank (Accession Nos. KJ879240 and KM213121). A GenBank BLAST search of two sequences revealed 99% identity with P. tridactyla infecting Prunus salicina Lindl. in Korea (3). Based on ITS and a 28S rDNA phylogenetic tree, the two sequences retrieved from the Chinese specimen clustered within a strongly supported clade (bootstrap value = 100%) with P. tridactyla (JQ517296 and AB022393, respectively). Cladistic trees were constructed using the neighbor-joining method with the Kimura two-parameter substitution model in MEGA 5.0. Branch robustness was assessed via bootstrap analysis with 1,000 replicates. Phylogenetic analysis data were in agreement with morphological characters (3). To our knowledge, this is the first report of powdery mildew caused by P. tridactyla on P. hypoleuca. While Koch's postulates have not been carried out because of the biotrophic nature of the pathogen, the present report serves as a novel resource in order to improve the understanding of the etiology and epidemiology of the powdery mildew (P. tridactyla) on P. hypoleuca. The occurrence of P. tridactyla, a common powdery mildew on Prunus s. lat., supports recently published results of phylogenetic analyses of the Prunus complex, indicating that Maddenia must be reduced to synonymy with Prunus (4). References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, Netherlands, 2012. (3) S. C. Lee et al. Res. Plant Dis. 18:49, 2012. (4) J. Wen and W. T. Shi. PhytoKeys 17(2):39, 2012.


Sign in / Sign up

Export Citation Format

Share Document