powdery mildew pathogen
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Stefan Kusch ◽  
Lamprinos Frantzeskakis ◽  
Birthe D. Lassen ◽  
Florian Kümmel ◽  
Lina Pesch ◽  
...  

Hosts and pathogens typically engage in an evolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria graminis f.sp. hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence is associated with a distinctive pattern of adaptive mutations, including small-sized (8-40 kb) deletions, one of which likely affects spore morphology. The detected mutational spectrum comprises the same loci in at least two independent mlo-virulent isolates, indicating convergent multigenic evolution. This work highlights the dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.


Author(s):  
Paloma Durán ◽  
Anja Reinstädler ◽  
Anna Lisa Rajakrut ◽  
Masayoshi Hashimoto ◽  
Ruben Garrido‐Oter ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Paul D. Mihalyov ◽  
Andrea R. Garfinkel

Powdery mildew is among the most common diseases of both hemp- and marijuana-type cultivated Cannabis sativa. Despite its prevalence, no documented studies have characterized sources of natural genetic resistance in this pathosystem. Here we provide evidence for the first resistance (R) gene in C. sativa, represented by a single dominant locus that confers complete resistance to an isolate of the powdery mildew pathogen Golovinomyces ambrosiae, found in the Pacific Northwest of the United States. Linkage mapping with nearly 10,000 single nucleotide polymorphism (SNP) markers revealed that this R gene (designated PM1) is located on the distal end of the long arm of one of the largest chromosomes in the C. sativa genome. According to reference whole genome sequences and Sanger sequencing, the marker was tentatively placed in a cluster of R genes of the nucleotide-binding site (NBS) and leucine-rich repeat (LRR) protein type. PM1's dominant behavior, qualitative penetrance, and a co-segregating qPCR marker to track its inheritance were confirmed in two separate genetic backgrounds totaling 185 recombinant F1 plants. The goal of this study is to provide a foundation for the discovery and characterization of additional sources of genetic resistance to pathogens that infect C. sativa.


2021 ◽  
Vol 22 (12) ◽  
pp. 6585
Author(s):  
Muhammad Salman Haider ◽  
Savitha De Britto ◽  
Geetha Nagaraj ◽  
Bhavya Gurulingaiah ◽  
Ravikant Shekhar ◽  
...  

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF- Trichoderma harzianum Rifai), powdery mildew pathogen (PPM—Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.


2021 ◽  
Author(s):  
Kai-Cheng Cui ◽  
Min Liu ◽  
Gui-Hua Ke ◽  
Xing-Yuan Zhang ◽  
Bo Mu ◽  
...  

Abstract As one of the most economically important fruit crops in the world, grapevine (Vitis vinifera) suffers significant yield losses from many pathogens including powdery mildew caused by Erysiphe necator. By contrast, several wild Chinese grapevines including Vitis pseudoreticulata accession ‘Baihe-35-1’ exhibit a high resistance to powdery mildew pathogen. Here, we identified a grapevine gene CSN5 (COP9 signalosome complex subunit 5), designated VvCSN5, which showed different expression patterns in ‘Baihe-35-1’ and in susceptible cultivar V. vinifera ‘Thompson Seedless’ during powdery mildew isolate En NAFU1 infection. Moreover, transient silence of VvCSN5 in ‘Thompson Seedless’ leaves enhanced resistance to En NAFU1, which is accompanied by cell wall deposition at the attempt sites, and hypersensitive response-like cell death of penetrated epidermal cells. Several defense-related marker genes (VvPR1, VvPR3, VvPAD4, and VvRBOHD) had higher basal expression levels in VvCSN5-silenced leaves. In addition, we found the structure and activity of CSN5 promoters in ‘Thompson Seedless’ and ‘Baihe-35-1’ were discrepant, which may be one of the reasons for their different resistance to powdery mildew infection. Taken together, these results imply that grapevine CSN5 plays an important role in the responses to powdery mildew.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zong-ming Sheu ◽  
Ming-hsueh Chiu ◽  
Lawrence Kenyon

Mungbean (Vigna radiata L.) is routinely grown in the experimental fields at the headquarters of the World Vegetable Center (23°6'30.88"N, 120°17'51.31"E) for breeding, research and germplasm multiplication. In a spring 2016 mungbean trial, about 50% of the plants were affected with powdery mildew. The white, powdery-like patches first appeared on the upper leaf surfaces, and soon developed to grey patches on both sides of the leaves. Purple to brown discoloration appeared on the underside of the infected leaf. Microscopy examination revealed that the causal organism was not Erysiphe polygoni, which had previously been documented as the powdery mildew pathogen on mungbean in Taiwan (Hartman et al. 1993). The fungus produced typical structures of the powdery mildew Euoidium, anamorph of the genus Podosphaera. The mycelium consisted of septate, flexuous hyphae with indistinct appressoria. The erect conidiophores arising from superficial hyphae varied from straight or slightly curved to curled. Three to ten conidia were borne in long chains with crenate edges. Foot-cells were straight, cylindrical and measured 30 to 52 µm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, with fibrosin bodies, and measured 27 to 33 (mean = 30.4) × 15 to 20 (mean = 16.6) µm. Germ tubes were clavate and occasionally forked, and were produced from the lateral sites of the conidia. No chasmothecia were found in the samples. The morphological characteristics were consistent with P. xanthii (Castagne) U. Braun & Shishkoff (Braun & Cook 2012). To confirm the identity, the internal transcribed spacer (ITS) region of rDNA and partialβ-tubulin gene (TUB2) for the isolate MG3 were amplified with the primers ITS4/ITS5 (White et al. 1990) and BtuF5/BtuR7a (Ellingham et al. 2019), respectively. BLASTn analysis revealed the ITS sequence (MN833717) was 100% identical to many records of P. xanthii whereas the TUB2 sequence (MW363957) was 100% identical to a record of P. fusca (syn. P. xanthii; KC333362) in NCBI GenBank. A pathogenicity test was conducted by dusting conidia from an infected leaf onto six healthy four-week-old mungbean plants (cv ‘Tainan No. 3’). Another three plants were not inoculated and were used as control. All the plants were maintained in a greenhouse at 25 to 28°C. All inoculated plants developed powdery mildew symptoms after 10 days, whereas the control plants remained symptomless. To our knowledge, this is the first report of P. xanthii causing disease on mungbean in Taiwan. P. xanthii also has been reported on mungbean in Thailand (Meeboon et al. 2016), while other records referring to E. polygoni infecting Vigna spp. are from Brazil and Fiji (Farr & Rossman 2020). Although both P. xanthii and E. polygoni have now been reported as causing powdery mildew on mungbean in Taiwan, which species predominates or is more important remains unclear. A comprehensive survey with accurate species identification is required to develop effective management of the disease, particularly for resistance breeding.


Sign in / Sign up

Export Citation Format

Share Document