Synthesis of surfactants based on pentaerythritol. II. Anionic gemini surfactants

2013 ◽  
Vol 91 (11) ◽  
pp. 1085-1092 ◽  
Author(s):  
Thomas Tran ◽  
Nusrat Jahan ◽  
D. Gerrard Marangoni ◽  
T. Bruce Grindley

Efficient syntheses of three series of anionic gemini surfactants based on pentaerythritol are described. A series of disulfates was prepared by the double displacement of the two cyclic sulfates in the S4-symmetric compound pentaerythritol spirobicyclic sulfate (1) with linear alkoxides. A second series of disulfates was prepared by reaction of the dialkoxides of di-O-alkylpentaerythritols with ethylene sulfate. The di-O-alkylpentaerythritols can be prepared as previously reported by us or by the acid-catalyzed hydrolysis of the first series of disulfates. A series of disulfonates was prepared by reaction of the dialkoxides of di-O-alkylpentaerythritols with 1,3-propanesultone. This last set of reactions was complicated by the formation of oxetanes, which probably arose from initial reversible displacement on sulfur of the sultone alkoxide by the pentaerythritol alkoxide followed by a second intramolecular displacement of the resulting sulfonate. Changing the order of addition to keep the reaction medium from containing excess base as well as lowering the reaction temperature minimized the amounts of these byproducts. All three series had excellent surfactant properties.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chao-Yi Wei ◽  
Tzou-Chi Huang ◽  
Ho-Hsien Chen

Transesterification of oils and lipids in supercritical methanol is commonly carried out in the absence of a catalyst. In this work, supercritical methanol, carbon dioxide, and acetic acid were used to produce biodiesel from soybean oil. Supercritical carbon dioxide was added to reduce the reaction temperature and increase the fats dissolved in the reaction medium. Acetic acid was added to reduce the glycerol byproduct and increase the hydrolysis of fatty acids. The Taguchi method was used to identify optimal conditions in the biodiesel production process. With an optimal reaction temperature of 280°C, a methanol-to-oil ratio of 60, and an acetic acid-to-oil ratio of 3, a 97.83% yield of fatty acid methyl esters (FAMEs) was observed after 90 min at a reaction pressure of 20 MPa. While the common approach to biodiesel production results in a glycerol byproduct of about 10% of the yield, the practices reported in this research can reduce the glycerol byproduct by 30.2% and thereby meet international standards requiring a FAME content of >96%.


2013 ◽  
Vol 291-294 ◽  
pp. 249-252
Author(s):  
Ying Liu ◽  
Lu Lin ◽  
Xiao Yu Sui ◽  
Jun Ping Zhuang ◽  
Chun Sheng Pang

Hydrolysis of glucose to produce levulinic acid catalyzed by ZSM-5 loading SO42-/ ZrO2 was studied in this paper. The effects of different factors such as catalyst amount, reaction temperature, reaction time on the yields of levulinic acid and hydroxymethyl furfural were investigated. It was found that the highest yield of levulinic acid was 55.03% (molar percent) under the conditions of catalyst amount 3 g, reaction temperature 180 °C and reaction time 2.5 h. Surface structure of catalyst was analyzed by FT-IR, indicating that crystallinity of catalyst was 0.66.


1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


1980 ◽  
Vol 45 (7) ◽  
pp. 1959-1963 ◽  
Author(s):  
Dušan Joniak ◽  
Božena Košíková ◽  
Ludmila Kosáková

Methyl 4-O-(3-methoxy-4-hydroxybenzyl) and methyl 4-O-(3,5-dimethoxy-4-hydroxybenzyl)-α-D-glucopyranoside and their 6-O-isomers were prepared as model substances for the ether lignin-saccharide bond by reductive cleavage of corresponding 4,6-O-benzylidene derivatives. Kinetic study of acid-catalyzed hydrolysis of the compounds prepared was carried out by spectrophotometric determination of the benzyl alcoholic groups set free, after their reaction with quinonemonochloroimide, and it showed the low stability of the p-hydroxybenzyl ether bond.


1986 ◽  
Vol 51 (12) ◽  
pp. 2786-2797
Author(s):  
František Grambal ◽  
Jan Lasovský

Kinetics of formation of 1,2,4-oxadiazoles from 24 substitution derivatives of O-benzoylbenzamidoxime have been studied in sulphuric acid and aqueous ethanol media. It has been found that this medium requires introduction of the Hammett H0 function instead of the pH scale beginning as low as from 0.1% solutions of mineral acids. Effects of the acid concentration, ionic strength, and temperature on the reaction rate and on the kinetic isotope effect have been followed. From these dependences and from polar effects of substituents it was concluded that along with the cyclization to 1,2,4-oxadiazoles there proceeds hydrolysis to benzamidoxime and benzoic acid. The reaction is thermodynamically controlled by the acid-base equilibrium of the O-benzylated benzamidoximes.


2021 ◽  
Vol 93 (5) ◽  
pp. 796-801
Author(s):  
Jens Bobers ◽  
Elisabeth Forys ◽  
Bastian Oldach ◽  
Norbert Kockmann

1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


Sign in / Sign up

Export Citation Format

Share Document