Synthesis of perovskite-based nanocomposites for deNOx catalytic activity

2016 ◽  
Vol 94 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Minh-Nguyet T. Tran ◽  
Hoang-Yen T. Quach ◽  
Quy V. Nguyen ◽  
Thanh-Dinh Nguyen ◽  
Do-Trong On

Three different types of perovskite-based nanocomposites were synthesized by calcination of the same gel mixtures (molar ratio for La:Sr:Co 0.4:0.6:1.0) under different reaction conditions (unconventional method: calcination at 1000 °C and 800 °C under vacuum; and conventional method: calcination in air at 1000 °C). The obtained products were studied by multianalytic techniques including powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). NOx reduction using propene (C3H6) as a reductant in the presence of oxygen was studied using temperature-programmed surface reaction (TPSR). The analyzed results showed that multiphase products were found by the unconventional method (in the absence of oxygen), whereas the conventional method (in the presence of oxygen) yielded single-phase perovskites. The multiphase nanocomposite products prepared under vacuum at 1000 °C exhibited higher catalytic activity and higher N2 yield compared with the samples obtained under vacuum at lower temperature (800 °C) and the single-phase perovskites.

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 878 ◽  
Author(s):  
Benjamín Torres-Olea ◽  
Sandra Mérida-Morales ◽  
Cristina García-Sancho ◽  
Juan Antonio Cecilia ◽  
Pedro Maireles-Torres

In the present work, a series of catalysts based on aluminum and zirconium oxides was studied for the transformation of glucose into 5-hydroxymethylfurfural. These catalysts were characterized by using experimental techniques, such as X-ray diffraction, N2 adsorption–desorption at −196 °C, X-ray photoelectron spectroscopy, temperature-programmed desorption of NH3 and CO2, and scanning transmission electron microscopy. The catalytic behavior in glucose dehydration was evaluated in a water-methyl isobutyl ketone biphasic system, in the presence of CaCl2, in order to minimize losses due to unwanted secondary reactions. High glucose conversion and 5-hydroxymethylfurfural (HMF) yield values were obtained in the presence of an Al(Zr)Ox catalyst with an Al:Zr molar ratio of 7:3, reaching 97% and 47%, respectively, at 150 °C after 120 min. Under tested conditions, this catalyst retained most of its catalytic activity for four reuses.


2019 ◽  
Vol 79 (7) ◽  
pp. 1276-1286 ◽  
Author(s):  
Tijani Hammedi ◽  
Mohamed Triki ◽  
Mayra G. Alvarez ◽  
Jordi Llorca ◽  
Abdelhamid Ghorbel ◽  
...  

Abstract This paper is built on the Fenton-like oxidation of p-hydroxybenzoic acid (p–HBZ) in the presence of H2O2 and 3%Fe supported on CeO2-TiO2 aerogels under mild conditions. These catalysts were deeply characterized by X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). The effect of thermal treatment, pH (2–3, 5, 7), H2O2/p–HBZ molar ratio (5, 15, 20, 25) and reaction temperature (25 °C, 40 °C and 60 °C) on the catalytic properties of supported Fe catalysts are studied. Our results highlight the role of CeO2 and the calcination of the catalyst to obtain the highest catalytic properties after 10 min: 73% of p–HBZ conversion and 52% of total organic carbon (TOC) abatement.


2006 ◽  
Vol 6 (11) ◽  
pp. 3567-3571 ◽  
Author(s):  
Eun-Yong Ko ◽  
Eun Duck Park ◽  
Kyung Won Seo ◽  
Hyun Chul Lee ◽  
Doohwan Lee ◽  
...  

The preferential CO oxidation in the presence of excess hydrogen was studied over Pt-Co/γ-Al2O3. CO chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX) and temperature programmed reduction (TPR) were conducted to characterize active catalysts. The catalytic activity for CO oxidation and methanation at low temperatures increased with the amounts of cobalt in Pt-Co/γ-Al2O3. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Co and Pt was determined to be 10. The co-impregnated Pt-Co/γ-Al2O3 appeared to be superior to Pt/Co/γ-Al2O3 and Co/Pt/γ-Al2O3. The reductive pretreatment at high temperature such as 773 K increased the CO2 selectivity over a wide reaction temperature. The bimetallic phase of Pt-Co seems to give rise to high catalytic activity in selective oxidation of CO in H2-rich stream.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 370
Author(s):  
Yue Yang ◽  
Xiaochen Liu ◽  
Yuanjie Xu ◽  
Xing Gao ◽  
Yihu Dai ◽  
...  

Hydrodeoxygenation (HDO) is one of the promising catalytic routes for converting biomass derived molecules to high value products. A key step of HDO is the cleavage of an aromatic C–O bond to accomplish the deoxygenation step, however, which is energetically unfavorable. Herein, we report a series of palladium (Pd)-incorporated α-phase of molybdenum carbide (α-MoC) mesoporous composites for enhanced HDO activity of a biomass model molecule, anisole. The catalysts, x%Pd/α-MoC (x% is the molar ratio of Pd/Mo), were investigated by X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD), Brunauer–Emmett–Teller (BET), Raman, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. Pd is highly dispersed on α-MoC when x% ≤ 1%, but aggregate to form nanoparticles when x% = 5%. The x%Pd/α-MoC catalysts (x% ≤ 1%) show enhanced HDO activity in terms of turnover frequency (TOF) and apparent activation energy barrier (Ea) compared with α-MoC and β-Mo2C catalysts. The TOF of 1%Pd/α-MoC catalyst at 160 °C is 0.115 h−1 and the Ea is 48.2 kJ/mol. Moreover, the direct cleavage of aromatic C–O bond is preferred on 1%Pd/α-MoC catalyst. The enhanced HDO activity is attributed to superior H2 dissociation ability by the highly dispersed Pd sites on carbide. This work brings new insights for rational design of the catalyst for selective C–O bond activation.


2021 ◽  
pp. 174751982098472
Author(s):  
Jun Yu ◽  
Ying Han ◽  
Guoqing Chen ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
...  

The effect of carbon nanotubes on the catalytic properties of Rh-Mn-Li/SiO2 catalysts was investigated for CO hydrogenation. The catalysts were comprehensively characterized by means of X-ray power diffraction, N2 sorption, transmission electron microscope, H2–temperature-programmed reduction, CO–temperature-programmed desorption, temperature-programmed surface reaction, and X-ray photoelectron spectroscopy. The results showed that an appropriate amount of carbon nanotubes can be attached to the surface of the SiO2 sphere and can improve the Rh dispersion. Moderate Rh-Mn interaction can be obtained by doping with the appropriate amount of carbon nanotubes, which promotes the formation of strongly adsorbed CO and facilitates the progress of CO insertion, resulting in the increase in the selectivity of C2+ oxygenate synthesis.


2003 ◽  
Vol 18 (10) ◽  
pp. 2359-2363 ◽  
Author(s):  
Hongzhou Gu ◽  
Yunle Gu ◽  
Zhefeng Li ◽  
Yongcheng Ying ◽  
Yitai Qian

Nanoscale hollow spheres of amorphous phosphorus nitride (P3N5) were synthesized by reacting PCl3 with NaN3 at 150–250 °C. Transmission electron microscope images show that the hollow spheres have a diameter of 150–350 nm, and the thickness of the shell is 20 nm. A very small amount of curly films were also found in the sample prepared at 150 °C. The infrared spectrum indicates a high degree of purity. X-ray photoelectron spectroscopy indicates the presence of P and N, with a molar ratio of 1:1.62 for P:N. Ultraviolet-visible absorption spectroscopy shows an absorption band at 265–315 nm. Under photoluminescent excitation at 230 nm, the P3N5 emits ultraviolet light at 305 nm. With a band gap of 4.28 eV, the products may be a wide gap semiconductor. A possible mechanism and the influence of temperature on the formation of the hollow spheres are also discussed.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 375
Author(s):  
Adele R. Latypova ◽  
Maxim D. Lebedev ◽  
Evgeniy V. Rumyantsev ◽  
Dmitry V. Filippov ◽  
Olga V. Lefedova ◽  
...  

The article describes the synthesis of aminoorgano-functionalized silica as a prospective material for catalysis application. The amino groups have electron donor properties which are valuable for the metal chemical state of palladium. Therefore, the presence of electron donor groups is important for increasing catalysts’ stability. The research is devoted to the investigation of silica amino-modified support influence on the activity and stability of palladium species in 4-nitroaniline hydrogenation process. A series of catalysts with different supports such as SiO2, SiO2-C3H6-NH2 (amino-functionalized silica), γ-Al2O3 and activated carbon were studied. The catalytic activity was studied in the hydrogenation of 4-nitroaniline to 1,4-phenylenediamine. The catalysts were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and chemisorption of hydrogen by the pulse technique. The 5 wt.% Pd/SiO2-C3H6-NH2 catalyst exhibited the highest catalytic activity for 4-nitroaniline hydrogenation with 100% conversion and 99% selectivity with respect to 1,4-phenylenediamine.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Long Lu ◽  
Xueman Wang ◽  
Chunhua Hu ◽  
Ying Liu ◽  
Xiongbo Chen ◽  
...  

Nanosized V-Ce oxides supported on TiO2 (VCT) were prepared and utilized in the low-temperature selective catalytic reduction (SCR) of NO with NH3. Compared with the other V-Ce oxides-based catalysts supported on Al2O3, ZrO2, and ZSM-5, VCT showed the best SCR activity in a low-temperature range. The NOx conversion of 90% could be achieved at 220 °C. Characterizations including X-ray diffraction (XRD), scanning election micrograph (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption with NH3 (NH3-TPD), and temperature-programmed reduction with H2 (H2-TPR) showed that V1.05Ce1/TiO2 exhibited a good dispersion of V2O5, enrichment of surface Ce3+ and chemical-absorbed oxygen, and excellent redox capacity and acidity, which resulted in the best SCR performance at low temperature.


2020 ◽  
Vol 131 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Johann Kirchner ◽  
Christian Zambrzycki ◽  
Zeynep Baysal ◽  
Robert Güttel ◽  
Sven Kureti

Abstract Fe@SiO2 core–shell model catalysts were investigated for the conversion of CO2 and H2 into CH4, CO and H2O. For evaluation of the effect of core size on the catalytic activity, samples with Fe particle sizes of 4, 6 and 8 nm were prepared. Fresh and spent catalysts were thoroughly characterized by X-ray diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, temperature programmed hydrogenation and X-ray photoelectron spectroscopy. As a result, the yield of the major product CO as well as CH4 was increased with Fe core size. Additionally, growing Fe cores led to stronger carburization and higher amount of reactive carbide entities, which drive the CH4 formation. Finally, formation of inactive bulk carbon deposition is strongly suppressed for the core–shell catalysts in comparison to bulk iron oxide catalysts used for CO2 hydrogenation.


Sign in / Sign up

Export Citation Format

Share Document