Highly active carbon nanotube–promoted Rh-Mn-Li/SiO2 catalysts for the synthesis of C2+ oxygenates from syngas

2021 ◽  
pp. 174751982098472
Author(s):  
Jun Yu ◽  
Ying Han ◽  
Guoqing Chen ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
...  

The effect of carbon nanotubes on the catalytic properties of Rh-Mn-Li/SiO2 catalysts was investigated for CO hydrogenation. The catalysts were comprehensively characterized by means of X-ray power diffraction, N2 sorption, transmission electron microscope, H2–temperature-programmed reduction, CO–temperature-programmed desorption, temperature-programmed surface reaction, and X-ray photoelectron spectroscopy. The results showed that an appropriate amount of carbon nanotubes can be attached to the surface of the SiO2 sphere and can improve the Rh dispersion. Moderate Rh-Mn interaction can be obtained by doping with the appropriate amount of carbon nanotubes, which promotes the formation of strongly adsorbed CO and facilitates the progress of CO insertion, resulting in the increase in the selectivity of C2+ oxygenate synthesis.

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Long Lu ◽  
Xueman Wang ◽  
Chunhua Hu ◽  
Ying Liu ◽  
Xiongbo Chen ◽  
...  

Nanosized V-Ce oxides supported on TiO2 (VCT) were prepared and utilized in the low-temperature selective catalytic reduction (SCR) of NO with NH3. Compared with the other V-Ce oxides-based catalysts supported on Al2O3, ZrO2, and ZSM-5, VCT showed the best SCR activity in a low-temperature range. The NOx conversion of 90% could be achieved at 220 °C. Characterizations including X-ray diffraction (XRD), scanning election micrograph (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption with NH3 (NH3-TPD), and temperature-programmed reduction with H2 (H2-TPR) showed that V1.05Ce1/TiO2 exhibited a good dispersion of V2O5, enrichment of surface Ce3+ and chemical-absorbed oxygen, and excellent redox capacity and acidity, which resulted in the best SCR performance at low temperature.


2012 ◽  
Vol 184-185 ◽  
pp. 1289-1293
Author(s):  
Lu Zhi Wang ◽  
Lin Yu ◽  
Xiao Ling Cheng ◽  
Jun He ◽  
Le Jia Lin ◽  
...  

The Dopamine-modified multiwalled carbon nanotubes (MWNT-Dopa) were synthesized by chemical reaction between dopamine (Dopa) and multiwalled carbon nanotubes which oxidazed by mixed-acid (MWNT-COOH). The structure of MWNT-Dopa were analyzed by Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric (TG), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques and the dispersity of MWNT-Dopa were studied by Dispersion stability analyzer. The results show that dopamine has been grafted on multiwalled carbon nanotubes successfully, and a dopamine layer which wraps on the surface of multiwalled nanotubes make multiwalled nanotubes have outstanding dispersity in water.


2018 ◽  
Vol 54 ◽  
pp. 127-135
Author(s):  
Wen Zhao ◽  
Wen Cai Wang ◽  
Yong Lai Lu ◽  
Li Qun Zhang

Carbon nanotubes/alumina (CNTs/Al2O3) nanocomposites were prepared by the poly (dopamine) assisted chemical liquid phase deposition (CLPD). The poly (dopamine) layers were firstly coated on the CNTs surface uniformly by the self-oxidative polymerization of dopamine in mild aqueous solution and then the Al2O3 nanoparticles formed on the poly (dopamine) coated CNTs surface by the CLPD. The hydrophilic poly (dopamine) layers on the CNTs surface can improve the dispersion of CNTs in aqueous solution. Moreover, it can be used as a key linker between the CNTs and Al2O3 because of the nitrogen-containing group in poly (dopamine) could coordinate with Al3+ ions. The as-prepared poly (dopamine) coated CNTs and CNTs/Al2O3 nanohybrids were characterized by X-ray photoelectron spectroscopy (XPS), X-radial diffractometer (XRD) and high resolution transmission electron microscopy (HRTEM). These results showed that the poly (dopamine) layers were coated on the surface of CNTs uniformly, and the Al2O3 nanoparticles embellished with the poly (dopamine) coated CNTs surface. Compared with pristine NR composites, the thermal conductivity of the as-prepared NR/CNTs@Al2O3 composites increased 17%.


Author(s):  
Khaled Alshammari ◽  
Yubiao Niu ◽  
Richard E. Palmer ◽  
Nikolaos Dimitratos

A sol-immobilization method is used to synthesize a series of highly active and stable Au x Pd 1− x /TiO 2 catalysts (where x  = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) for wastewater remediation. The catalytic performance of the materials was evaluated for the catalytic reduction of 4-nitrophenol, a model wastewater contaminant, using NaBH 4 as the reducing agent under mild reaction conditions. Reaction parameters such as substrate/metal and substrate/reducing agent molar ratios, reaction temperature and stirring rate were investigated. Structure-activity correlations were studied using a number of complementary techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. The sol-immobilization route provides very small Au–Pd alloyed nanoparticles, with the highest catalytic performance shown by the Au 0.5 Pd 0.5 /TiO 2 catalyst. This article is part of a discussion meeting issue ‘Science to enable the circular economy’.


2020 ◽  
Vol 131 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Johann Kirchner ◽  
Christian Zambrzycki ◽  
Zeynep Baysal ◽  
Robert Güttel ◽  
Sven Kureti

Abstract Fe@SiO2 core–shell model catalysts were investigated for the conversion of CO2 and H2 into CH4, CO and H2O. For evaluation of the effect of core size on the catalytic activity, samples with Fe particle sizes of 4, 6 and 8 nm were prepared. Fresh and spent catalysts were thoroughly characterized by X-ray diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, temperature programmed hydrogenation and X-ray photoelectron spectroscopy. As a result, the yield of the major product CO as well as CH4 was increased with Fe core size. Additionally, growing Fe cores led to stronger carburization and higher amount of reactive carbide entities, which drive the CH4 formation. Finally, formation of inactive bulk carbon deposition is strongly suppressed for the core–shell catalysts in comparison to bulk iron oxide catalysts used for CO2 hydrogenation.


2019 ◽  
Vol 79 (7) ◽  
pp. 1276-1286 ◽  
Author(s):  
Tijani Hammedi ◽  
Mohamed Triki ◽  
Mayra G. Alvarez ◽  
Jordi Llorca ◽  
Abdelhamid Ghorbel ◽  
...  

Abstract This paper is built on the Fenton-like oxidation of p-hydroxybenzoic acid (p–HBZ) in the presence of H2O2 and 3%Fe supported on CeO2-TiO2 aerogels under mild conditions. These catalysts were deeply characterized by X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). The effect of thermal treatment, pH (2–3, 5, 7), H2O2/p–HBZ molar ratio (5, 15, 20, 25) and reaction temperature (25 °C, 40 °C and 60 °C) on the catalytic properties of supported Fe catalysts are studied. Our results highlight the role of CeO2 and the calcination of the catalyst to obtain the highest catalytic properties after 10 min: 73% of p–HBZ conversion and 52% of total organic carbon (TOC) abatement.


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Elena Tomšík ◽  
Zuzana Morávková ◽  
Jaroslav Stejskal ◽  
Miroslava Trchová ◽  
Petr Šálek ◽  
...  

AbstractPolyaniline coating was deposited on the surface of multi-wall carbon nanotubes of Russian and Taiwanese origin in situ during the polymerization of aniline. The deposited polyaniline film was subsequently carbonized under an inert atmosphere at various temperatures to produce coaxial coating of the carbon nanotubes with nitrogen-containing carbon. The new materials were investigated by infrared and Raman spectroscopies, which demonstrated the conversion of the polyaniline coating to a carbonized structure. X-ray photoelectron spectroscopy proved that the carbonized overlayer contains nitrogen atoms in various covalent bonding states. Transmission electron microscopy confirmed the coaxial structure of the composites. The Brunauer-Emmett-Teller method was used to estimate the specific surface area, the highest being 272 m2 g−1. The conductivity of 0.9–16 S cm−1 was measured by the four-point method, and it was only a little affected by the carbonization of the polyaniline coating.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2889 ◽  
Author(s):  
Giuseppe Cirillo ◽  
Orazio Vittorio ◽  
David Kunhardt ◽  
Emanuele Valli ◽  
Florida Voli ◽  
...  

A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.


Sign in / Sign up

Export Citation Format

Share Document