scholarly journals Synthesis, radiolabelling, and biodistribution studies of triazole derivatives for targeting melanoma

2016 ◽  
Vol 94 (9) ◽  
pp. 773-780 ◽  
Author(s):  
Stephanie M. Rathmann ◽  
Nancy Janzen ◽  
John F. Valliant

Molecular probes that target specific markers expressed in solid tumours are in demand for cancer imaging and radionuclide therapy applications. The synthesis, characterization, and in vivo evaluation of radioiodinated triazoles designed as probes to target melanoma are described here. Compounds were prepared using a thermal click reaction between ethynylstannane and methyl 2-azidoacetate, resulting in preferential formation of the corresponding 1,4-tin triazole. The primary amine of various targeting vectors was then coupled to the resulting tin triazole methyl ester. These precursors were labelled with no carrier added 123I or 125I and purified by high performance liquid chromatography to give isolated radiochemical yields between 6% and 51% and radiochemical purities of >95% in all cases. Among the evaluated compounds, N-(2-diethylamino-ethyl)-2-(4-iodo-[1,2,3]triazol-1-yl)acetamide (7a) and N-(1-benzylpiperidin-4-yl)-2-(4-iodo-1H-1,2,3-triazol-1-yl)acetamide (7d) showed the most promising in vivo data, and their 123I-labelled forms were used in single photon emission computed tomography computed tomography (SPECT–CT) imaging studies. The imaging data showed excellent tumour visualization with a very high signal to noise ratio.

2020 ◽  
Vol 13 (10) ◽  
pp. 272
Author(s):  
Falco Reissig ◽  
David Bauer ◽  
Martin Ullrich ◽  
Martin Kreller ◽  
Jens Pietzsch ◽  
...  

Barium-131 is a single photon emission computed tomography (SPECT)-compatible radionuclide for nuclear medicine and a promising diagnostic match for radium-223/-224. Herein, we report on the sufficient production route 133Cs(p,3n)131Ba by using 27.5 MeV proton beams. An average of 190 MBq barium-131 per irradiation was obtained. The SR Resin-based purification process led to barium-131 in high radiochemical purity. An isotopic impurity of 0.01% barium-133 was detectable. For the first time, radiolabeling of the ligand macropa with barium-131 was performed. Radiolabeling methods under mild conditions and reaction controls based on TLC systems were successfully applied. Small animal SPECT/ computed tomography (CT) measurements and biodistribution studies were performed using [131Ba]Ba(NO3)2 as reference and 131Ba-labeled macropa in healthy mice for the first time. Biodistribution studies revealed the expected rapid bone uptake of [131Ba]Ba2+, whereas 131Ba-labeled macropa showed a fast clearance from the blood, thereby showing a significantly (p < 0.001) lower accumulation in the bone. We conclude that barium-131 is a promising SPECT radionuclide and delivers appropriate imaging qualities in small animals. Furthermore, the relative stability of the 131Ba-labeled macropa complex in vivo forms the basis for the development of sufficient new chelators, especially for radium isotopes. Thereby, barium-131 will attain its goal as a diagnostic match to the alpha emitters radium-223 and radium-224.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 237 ◽  
Author(s):  
Ana Castro-Balado ◽  
Cristina Mondelo-García ◽  
Miguel González-Barcia ◽  
Irene Zarra-Ferro ◽  
Francisco J Otero-Espinar ◽  
...  

Classical methodologies used in ocular pharmacokinetics studies have difficulties to obtain information about topical and intraocular distribution and clearance of drugs and formulations. This is associated with multiple factors related to ophthalmic physiology, as well as the complexity and invasiveness intrinsic to the sampling. Molecular imaging is a new diagnostic discipline for in vivo imaging, which is emerging and spreading rapidly. Recent developments in molecular imaging techniques, such as positron emission tomography (PET), single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), allow obtaining reliable pharmacokinetic data, which can be translated into improving the permanence of the ophthalmic drugs in its action site, leading to dosage optimisation. They can be used to study either topical or intraocular administration. With these techniques it is possible to obtain real-time visualisation, localisation, characterisation and quantification of the compounds after their administration, all in a reliable, safe and non-invasive way. None of these novel techniques presents simultaneously high sensitivity and specificity, but it is possible to study biological procedures with the information provided when the techniques are combined. With the results obtained, it is possible to assume that molecular imaging techniques are postulated as a resource with great potential for the research and development of new drugs and ophthalmic delivery systems.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ciara M. Finucane ◽  
Iain Murray ◽  
Jane K. Sosabowski ◽  
Julie M. Foster ◽  
Stephen J. Mather

We investigated the accuracy of a single photon emission computed tomography (SPECT) system in quantifying a wide range of radioactivity concentrations using different scan times in both phantom and animal models. A phantom containing various amounts of In-111 or Tc-99m was imaged until the activity had decayed close to background levels. Scans were acquired for different durations, employing different collimator pinhole sizes. VOI analysis was performed to quantify uptake in the images and the values compared to the true activity. The phantom results were then validated in tumour-bearing mice. The use of an appropriate calibration phantom and disabling of a background subtraction feature meant that absolute errors were within 12% of the true activity. Furthermore, a comparison of in vivo imaging and biodistribution studies in mice showed a correlation of 0.99 for activities over the 200 kBq to 5 MBq range. We conclude that the quantitative information provided by the NanoSPECT camera is accurate and allows replacement of dissection studies for assessment of radiotracer biodistribution in mouse models.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 182
Author(s):  
Ayman Abouzayed ◽  
Sara S. Rinne ◽  
Hamideh Sabahnoo ◽  
Jens Sörensen ◽  
Vladimir Chernov ◽  
...  

Background: Gastrin-releasing peptide receptor (GRPR) is an important target for imaging of prostate cancer. The wide availability of single-photon emission computed tomography/computed tomography (SPECT/CT) and the generator-produced 99mTc can be utilized to facilitate the use of GRPR-targeting radiotracers for diagnostics of prostate cancers. Methods: Synthetically produced mercaptoacetyl-Ser-Ser-Ser (maSSS)-PEG2-RM26 and mercaptoacetyl-Ser-Glu-Ser (maSES)-PEG2-RM26 (RM26 = d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) were radiolabeled with 99mTc and characterized in vitro using PC-3 cells and in vivo, using NMRI or PC-3 tumor bearing mice. SPECT/CT imaging and dosimetry calculations were performed for [99mTc]Tc-maSSS-PEG2-RM26. Results: Peptides were radiolabeled with high yields (>98%), demonstrating GRPR specific binding and slow internalization in PC-3 cells. [99mTc]Tc-maSSS-PEG2-RM26 outperformed [99mTc]Tc-maSES-PEG2-RM26 in terms of GRPR affinity, with a lower dissociation constant (61 pM vs 849 pM) and demonstrating higher tumor uptake. [99mTc]Tc-maSSS-PEG2-RM26 had tumor-to-blood, tumor-to-muscle, and tumor-to-bone ratios of 97 ± 56, 188 ± 32, and 177 ± 79, respectively. SPECT/CT images of [99mTc]Tc-maSSS-PEG2-RM26 clearly visualized the GRPR-overexpressing tumors. The dosimetry estimated for [99mTc]Tc-maSSS-PEG2-RM26 showed the highest absorbed dose in the small intestine (1.65 × 10−3 mGy/MBq), and the effective dose is 3.49 × 10−3 mSv/MBq. Conclusion: The GRPR antagonist maSSS-PEG2-RM26 is a promising GRPR-targeting agent that can be radiolabeled through a single-step with the generator-produced 99mTc and used for imaging of GRPR-expressing prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document