scholarly journals Background to some of the seismic design provisions of the 2015 National Building Code of Canada

2015 ◽  
Vol 42 (11) ◽  
pp. 940-952 ◽  
Author(s):  
Jagmohan Humar

The last version of the National Building Code of Canada was issued in 2010. The next version will be issued in 2015. In the code cycle between 2010 and 2015 significant changes have taken place in the seismic design provision. The main factor that drives these changes is an improved understanding of the seismic hazard across the country. Changes have also been introduced in the site effect factors. The structural design provisions have been appropriately adjusted to respond to changes in the estimates of hazard and the new site effect factors. There are also new provisions related to design in regions of low hazard, buildings with flexible diaphragms, buildings with inclined columns, passive energy dissipation systems, base isolation, rocking foundations, glazing systems, racks, and elevators. Some of the changes are briefly discussed. The main focus of the paper is, however, on the revisions to the structural design provisions.

2010 ◽  
Vol 37 (9) ◽  
pp. 1157-1170 ◽  
Author(s):  
Denis Mitchell ◽  
Patrick Paultre ◽  
René Tinawi ◽  
Murat Saatcioglu ◽  
Robert Tremblay ◽  
...  

The purpose of this paper is to provide a summary of the evolution of seismic design in Canada. This paper presents the significant changes to the approach taken in determining seismic hazards and seismic hazard maps, and describes the evolution of the seismic design provisions of the National building code of Canada. The introduction of important parameters in determining the seismic base shear such as the period of vibration of the structure, the influence of type of soil, and the concepts of ductility and energy dissipation capacity of elements and structures are presented. The levels of seismic design base shears, determined from different versions of the National Building Code of Canada, are compared for reinforced concrete frame and wall structures to illustrate the changes.


2015 ◽  
Vol 777 ◽  
pp. 121-129
Author(s):  
Wen Yi Zheng ◽  
Jing Zhe Jin ◽  
Hai Gong ◽  
Peng Pan

In the performance- based seismic design, seismic performance of building is differently evaluated according to variant seismic conditions. Most of the application programs for structural design (ETABS, SAP, MIDAS, ANSYS etc.) calculate the performance points of building according to Federal Emergency Management Agency(FEMA), Applied Technology Council -40 (ATC -40)’s seismic building code and parameters. On this paper, we evaluated the seismic performance of building according to our national seismic building code[1] and parameters and maked suggesti- -ons on the design practice.


2021 ◽  
Author(s):  
Xin Zhao ◽  
Gang Wang ◽  
Jinlun Cai ◽  
Junchen Guo

<p>With the continuous development and progress of society, the structure of high-rise buildings has been paid more and more attention by the engineering community. However, the existing high- rise structure design methods often have a lot of redundancy and have a lot of room for optimization. Most of the existing seismic design methods of high-rise structures are based on engineering experience and manual iterative methods, so that the efficiency of design can not meet the needs of the society. if the method of design automation is adopted, the workload of designers can be greatly reduced and the efficiency of structural design can be improved. Based on the digital modeling theory, this paper proposes a MAD automatic design algorithm, in which the designer provides the initial design of the structure, and the algorithm carries out the modeling, analysis, optimization and design of each stage of the structure, and finally obtains the optimal structure. The structural design module of this algorithm starts from the component level, when the component constraint design meets the limit requirements of the specification, it enters and completes the component constraint design and the global constraint design of the structure in turn. In this paper, taking a ten-story braced steel frame high-rise structure as an example, the optimal design is carried out, and its seismic performance is analyzed. the results show that the MAD automatic design algorithm can distribute the materials to each part reasonably, which can significantly improve the seismic performance of the structure and realize the effective seismic design.</p>


Sign in / Sign up

Export Citation Format

Share Document