A New Method for Determining Optimal Locations of Bike Stations to Maximize Coverage in a Bike Share System Network

Author(s):  
Rabab Salih-Elamin ◽  
Haitham Al-Deek

A new method that combines maximal covering location problem and bike station importance is utilized to find optimal locations of bike stations and maximize Bike Share System (BSS) demand coverage within a specific distance. This method uses multi-criteria that focus on centrality measures and bike station’s importance. Results of applying the new method to a real-life BSS network demonstrated that BSS efficiency improved after removing the least important bike stations up to a critical point after which efficiency started to deteriorate as the network became disconnected. The new method can be used to improve management of BSS networks.

2021 ◽  
Vol 40 (5) ◽  
pp. 9987-10002
Author(s):  
Junbin Wang ◽  
Zhongfeng Qin

The hub maximal covering location problem aims to find the best locations for hubs so as to maximize the total flows covered by predetermined number of hubs. Generally, this problem is defined in the framework of binary coverage. However, there are many real-life cases in which the binary coverage assumption may yield unexpected decisions. Thus, the partial coverage is considered by stipulating that the coverage of an origin-destination pair is determined by a non-increasing decay function. Moreover, as this problem contains strategic decisions in long range, the precise information about the parameters such as travel times may not be obtained in advance. Therefore, we present uncertain hub maximal covering location models with partial coverage in which the travel times are depicted as uncertain variables. Specifically, the partial coverage parameter is introduced in uncertain environment and the expected value of partial coverage parameter is further derived and simplified with specific decay functions. Expected value model and chance constrained programming model are respectively proposed and transformed to their deterministic equivalent forms. Finally, a greedy variable neighborhood search heuristic is presented and the efficiency of the proposed models is evaluated through computational experiments.


2021 ◽  
Vol 11 (1) ◽  
pp. 397
Author(s):  
Roghayyeh Alizadeh ◽  
Tatsushi Nishi ◽  
Jafar Bagherinejad ◽  
Mahdi Bashiri

The paper aims to study a multi-period maximal covering location problem with the configuration of different types of facilities, as an extension of the classical maximal covering location problem (MCLP). The proposed model can have applications such as locating disaster relief facilities, hospitals, and chain supermarkets. The facilities are supposed to be comprised of various units, called the modules. The modules have different sizes and can transfer between facilities during the planning horizon according to demand variation. Both the facilities and modules are capacitated as a real-life fact. To solve the problem, two upper bounds—(LR1) and (LR2)—and Lagrangian decomposition (LD) are developed. Two lower bounds are computed from feasible solutions obtained from (LR1), (LR2), and (LD) and a novel heuristic algorithm. The results demonstrate that the LD method combined with the lower bound obtained from the developed heuristic method (LD-HLB) shows better performance and is preferred to solve both small- and large-scale problems in terms of bound tightness and efficiency especially for solving large-scale problems. The upper bounds and lower bounds generated by the solution procedures can be used as the profit approximation by the managerial executives in their decision-making process.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ting Qian ◽  
Ling Wei

As an important tool for data analysis and knowledge processing, formal concept analysis (FCA) has been applied to many fields. In this paper, we introduce a new method to find all formal concepts based on formal contexts. The amount of intents calculation is reduced by the method. And the corresponding algorithm of our approach is proposed. The main theorems and the corresponding algorithm are examined by examples, respectively. At last, several real-life databases are analyzed to demonstrate the application of the proposed approach. Experimental results show that the proposed approach is simple and effective.


Author(s):  
Omar Kemmar ◽  
Karim Bouamrane ◽  
Shahin Gelareh

In this paper, we introduce a new hub-and-spoke structure for service networks based on round-trips as practiced by some transport service providers. This problem is a variant of Uncapacitated Hub Location Problem wherein the spoke nodes allocated to a hub node form round-trips (cycles) starting from and ending to the hub node. This problem is motivated by two real-life practices in logistics wherein  runaway  nodes and  runaway  connections with their associated economies of scale were foreseen to increase redundancy in the network. We propose a mixed integer linear programming mathematical model with exponential number of constraints. In addition to the separation routines for separating from among exponential constraints, we propose a hyper-heuristic based on reinforcement learning and its comparable counterpart as a variable neighborhood search. Our extensive computational experiments confirm efficiency of the proposed approaches.In this paper, we introduce a new hub-and-spoke structure for service networks based on round-trips as practiced by some transport service providers. This problem is a variant of Uncapacitated Hub Location Problem wherein the spoke nodes allocated to a hub node form round-trips (cycles) starting from and ending to the hub node. This problem is motivated by two real-life practices in logistics wherein  runaway  nodes and  runaway  connections with their associated economies of scale were foreseen to increase redundancy in the network. We propose a mixed integer linear programming mathematical model with exponential number of constraints. In addition to the separation routines for separating from among exponential constraints, we propose a hyper-heuristic based on reinforcement learning and its comparable counterpart as a variable neighborhood search. Our extensive computational experiments confirm efficiency of the proposed approaches.


2003 ◽  
Vol 13 (07) ◽  
pp. 1755-1765 ◽  
Author(s):  
Armengol Gasull ◽  
Joan Torregrosa

We study the center-focus problem as well as the number of limit cycles which bifurcate from a weak focus for several families of planar discontinuous ordinary differential equations. Our computations of the return map near the critical point are performed with a new method based on a suitable decomposition of certain one-forms associated with the expression of the system in polar coordinates. This decomposition simplifies all the expressions involved in the procedure. Finally, we apply our results to study a mathematical model of a mechanical problem, the movement of a ball between two elastic walls.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Takayasu Fushimi ◽  
Seiya Okubo ◽  
Kazumi Saito

Abstract In this study, we propose novel centrality measures considering multiple perspectives of nodes or node groups based on the facility location problem on a spatial network. The conventional centrality exclusively quantifies the global properties of each node in a network such as closeness and betweenness, and extracts nodes with high scores as important nodes. In the context of facility placement on a network, it is desirable to place facilities at nodes with high accessibility from residents, that is, nodes with a high score in closeness centrality. It is natural to think that such a property of a node changes when the situation changes. For example, in a situation where there are no existing facilities, it is expected that the demand of residents will be satisfied by opening a new facility at the node with the highest accessibility, however, in a situation where there exist some facilities, it is necessary to open a new facility some distance from the existing facilities. Furthermore, it is natural to consider that the concept of closeness differs depending on the relationship with existing facilities, cooperative relationships and competitive relationships. Therefore, we extend a concept of centrality so as to considers the situation where one or more nodes have already been selected belonging to one of some groups. In this study, we propose two measures based on closeness centrality and betweenness centrality as behavior models of people on a spatial network. From our experimental evaluations using actual urban street network data, we confirm that the proposed method, which introduces the viewpoints of each group, shows that there is a difference in the important nodes of each group viewpoint, and that the new store location can be predicted more accurately.


Sign in / Sign up

Export Citation Format

Share Document