Late Holocene glacial history of Scimitar Glacier, Mt. Waddington area, British Columbia Coast Mountains, Canada

2013 ◽  
Vol 50 (12) ◽  
pp. 1195-1208 ◽  
Author(s):  
Jessica A. Craig ◽  
Dan J. Smith

Scimitar Glacier originates below the northeast face of Mt. Waddington in the southern British Columbia Coast Mountains and flows 18 km down valley to calve into a proglacial lake. At several locations, downwasting of the glacier surface has exposed stacked till units separated by wood-bearing horizons in the proximal slopes of lateral moraines flanking the glacier. Historical moraine collapse and erosional breaching has also revealed the remains of standing trees buried in moraine-dammed lake sediments. Radiocarbon and tree-ring dating show that Scimitar Glacier expanded down valley at least three times in the late Holocene. The earliest evidence found for ice expansion indicates Scimitar Glacier was advancing in 3167–2737 cal years BP in association with the regional Tiedemann Advance. Following this advance, the glacier downwasted prior to expanding in 1568–1412 cal years BP during the First Millennial Advance. A final period phase of moraine construction was initiated during late Little Ice Age glacial expansion before A.D. 1742 and extended until at least A.D. 1851, after which Scimitar Glacier began to recede and downwaste. This record is comparable to that recorded at other glaciers in the southern British Columbia Coast Mountains and confirms the long-term relationship between regional climate trends and glacier behaviour in this setting.

2011 ◽  
Vol 48 (3) ◽  
pp. 603-618 ◽  
Author(s):  
Lindsey Koehler ◽  
Dan J. Smith

The dendroglaciologic and lichenometric research methodologies employed in this study provide a perspective of glaciological conditions from 5 ka to present in a remote headwater area of the British Columbia Coast Mountains. Since Holocene ice fronts of four glaciers at this site periodically extended below treeline, previous glacier advances overrode and buried forests beneath till deposits. This study suggests that glaciers were expanding into standing forests at 4.76 and 3.78 ka. Following glacier expansion at 3.78 ka, a period of recession ensued when glaciers withdrew upvalley long enough for the development of deep pedogenic surfaces and the growth of trees exceeding 300 years. Investigations at Beluga and Manatee glaciers benchmark a subsequent episode of significant glacial expansion at 2.42 ka referred to as the “Manatee Advance”. This advance has regional correlatives and is distinguished from the Tiedemann Advance at Manatee Glacier by documentation of substantive ice front retreat between the two episodes. Examination of Little Ice Age (LIA) deposits in the study area allowed for presentation and application of a revised Rhizocarpon spp. lichen growth curve. Lichenometric surveys of lateral moraines associated with Beluga, Manatee, and Oluk glaciers provided limited insight into their early LIA behaviour but record advances during the 15th and 16th centuries. Locally, glaciers achieved their maximum LIA size prior to an early to mid 18th century moraine-building event. This reconstruction of Holocene glacial history offers insights consistent with the emerging record of glacier activity described for other southern British Columbia Coast Mountain glaciers.


The Holocene ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Bethany Coulthard ◽  
Dan J Smith ◽  
Terri Lacourse

Dendroglaciological investigations near Mt. Waddington in the central British Columbia Coast Mountains provide an enhanced perspective of Holocene glacial activity. Field investigations at Confederation, Franklin, and Jambeau glaciers led to the discovery of subfossil wood mats encased in glacial deposits and glacially sheared stumps buried beneath till. Radiocarbon-dated wood collected from valley-bottom and lateral moraine sites at Confederation Glacier suggest that an early-Holocene advance occurred at c. 5665 cal. yr BP, followed by succeeding intervals of glacier expansion at c. 3700 and 3500 cal. yr BP. At Jambeau Glacier detrital wood mats buried close to the contemporary lateral moraine crests document glacier expansion at c. 3000 cal. yr BP. Detrital subfossil wood buried in lateral moraines at the confluence of Confederation and Franklin glaciers records distinct episodes of ‘Little Ice Age’ glacier expansion as early as c. 1212 cal. yr ad, and suggests the glacier surface continued to thicken until at least c. 1330–1410 cal. yr ad. An interval of downwasting and retreat followed, before late ‘Little Ice Age’ advances such as those at Jambeau Glacier were overwhelming valley-bottom forests by c. 1740 cal. yr ad. With the exception of the previously unrecognized advance of Confederation Glacier at c. 3700 cal. yr BP, our dendroglaciological findings corroborate the emerging record of Holocene glacier activity in the British Columbia Coast Mountains.


2003 ◽  
Vol 40 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
S J Larocque ◽  
D J Smith

The establishment of fourteen Little Ice Age (LIA) glacier chronologies in the Mt. Waddington area led to the development of an extended history of glacial activity in this portion of the southern British Columbia Coast Mountains, Canada. The glaciers were located within four different mountain ranges, and were of varying size and aspect. Dendrochronological and lichenometric techniques were used to provide relative age estimates of moraines formed as glacier termini retreated from advanced positions. Evidence for pre-LIA glacial events is best preserved at Tiedemann Glacier, where the oldest glacial advances date to A.D. 620 and 925–933. Soil-covered and well-vegetated moraines built at Cathedral, Pagoda, and Siva glaciers date to between A.D. 1203 and 1226. Following this event, moraines constructed at Ragnarok, Siva, and Cathedral glaciers in the mid-14th century suggest glaciers in the region underwent a period of downwasting and retreat before readvancing. The majority of moraines recorded in the Mt. Waddington area describe late-LIA glacial events shown to have constructed moraines that date to A.D. 1443–1458, 1506–1524, 1562–1575, 1597–1621, 1657–1660, 1767–1784, 1821–1837, 1871–1900, 1915–1928, and 1942–1946. Over the last 500 years, these moraine-building episodes were shown to occur on average every 65 years and suggest there has been prolonged synchronicity in the glaciological response to persistent climate-forcing mechanisms. Nevertheless, our analysis suggests that local factors, such as aspect and size, play an important role in individual glacial response. Notably, ice termini of medium-size glaciers facing eastwards showed a quicker response to climatically induced mass balance changes.


1992 ◽  
Vol 29 (11) ◽  
pp. 2383-2396 ◽  
Author(s):  
John J. Clague ◽  
William H. Mathews

Tide Lake was the largest glacier-dammed lake in British Columbia before its demise in the early twentieth century. Situated in the northern Coast Mountains, the lake was impounded by Frank Mackie Glacier and its Neoglacial end moraine. A study of Tide Lake has provided information on styles of glaciolacustrine sedimentation and the chronology of the Neoglacial interval.Much of the sediment underlying the floor of Tide Lake was transported by subglacial and proglacial meltwater streams flowing from nearby glaciers. During the last phase of the lake, large subaqueous fans were built in front of Berendon and Frank Mackie glaciers, and deltas formed on the east side of the basin. Rhythmically bedded fine sediments, which cover much of the lake floor but are almost completely lacking on the slopes above, were deposited from underflows originating on deltas and subaqueous fans and by fallout from interflows and overflows.Three major and one minor lake phases are recognized from stratigraphic, geomorphic, radiocarbon, and dendrochronological data: the earliest phase is undated, but older than 3000 BP (1300 B.C.); the second phase has yielded radiocarbon ages of 2600–2700 BP (800–1000 B.C.); a third, minor phase, during which Tide Lake was restricted to the northern part of the basin, began before 1600 BP (A.D. 350–550) and probably ended a few hundred years later; the last phase may have begun as early as 1000 BP (A.D. 1000–1150), peaked in the seventeenth century, and ended in the early twentieth century. During each of the four phases, Tide Lake fluctuated in a complex fashion and at times was empty. The second phase corresponds to a widely recognized middle Neoglacial advance in western North America; the last phase is coincident with the Little Ice Age. Outburst floods from Tide Lake in the nineteenth and early twentieth centuries devastated Bowser River valley as far downstream as Bowser Lake. The last of the floods occurred around A.D. 1930 when the Frank Mackie moraine was breached and the lake emptied for the last time.


2008 ◽  
Vol 45 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Scott I Jackson ◽  
Sarah C Laxton ◽  
Dan J Smith

Accelerated glacial recession and downwasting in Pacific North America is exposing land surfaces and features buried by glacial advances that, in many locations, predate the recent Little Ice Age (LIA). Dendrochronologic analyses of increment core samples from living trees (Abies lasiocarpa, Tsuga mertensiana) and samples of subfossil wood collected in the Todd Icefield area, Boundary Ranges, British Columbia Coast Mountains, provide the basis for a dendroglaciological and radiocarbon-based reconstruction of late Holocene glacier activity. Five intervals of glacier expansion were recorded by trees killed or buried by advancing glaciers: (1) an advance prior to ~3000 14C years BP; (2) an advance at ~3000 14C years BP that coincides with the regional Tiedemann advance; (3) an unattributed advance at 2300 14C years BP; (4) a two-phase advance at ~1700 and ~1450 14C years BP that corresponds with the regional First Millennium advance; (5) an advance with three phases of expansion that began prior to ~750 14C BP and is consistent with the regional early LIA interval and a two-phase interval of late LIA expansion culminating after ~240 and 100 years BP. This chronology of late Holocene glaciation matches that emerging from similar investigations in the coastal cordillera of Pacific North America and provides additional support for the regional significance of both the Tiedemann and the First Millennium advances.


2017 ◽  
Vol 54 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Vikki M. St-Hilaire ◽  
Dan J. Smith

Frank Mackie Glacier repeatedly advanced across the Bowser River valley in northwestern British Columbia to impound Tide Lake during the Holocene. The most recent infilling of Tide Lake was associated with a late Little Ice Age glacier advance and ended around 1930 when the lake catastrophically drained. Over the last century Frank Mackie Glacier has retreated and down wasted to reveal multiple glaciogenic sedimentary units within the proximal faces of prominent lateral moraines. The units are separated by buried in-situ tree stumps and laterally contiguous wood mats deposited on paleosols. Dendroglaciological and radiocarbon dating of these wood remains show that Frank Mackie Glacier expanded into standing forests at 3710–3300, 2700–2200, 1700–1290, 900–500, and 250–100 cal. years BP. These advances coincide closely in time with the previously established Tide Lake glacier dam chronology and with the Holocene history of other glaciers in the Bowser River watershed. The findings emphasize the likelihood that most glaciers within northwestern British Columbia underwent substantial size and mass balance changes over the last 4000 years, and often spent hundreds of years in advanced positions before retreating.


2007 ◽  
Vol 44 (5) ◽  
pp. 707-719 ◽  
Author(s):  
T A Arsenault ◽  
John J Clague ◽  
R W Mathewes

Moraine Bog lies just outside the outermost lateral moraine of Tiedemann Glacier in the southern Coast Mountains of British Columbia. A sediment core taken from the wetland was analyzed for pollen, magnetic susceptibility, and loss on ignition to reconstruct changes in vegetation and climate during the late Holocene. Vegetation changed little between about 3500 and 2400 14C years BP. A period of local disturbance marked by deposition of a silty clay bed and increases in Alnus pollen, likely reflecting cooler moister conditions, coincides with an extensive Holocene advance of Tiedemann Glacier about 2400 14C years BP. Warm dry conditions between about 1900 and 1500 14C years BP are suggested by peak values of Pseudotsuga pollen and increasing Nuphar sclereids; the latter suggests lowered water levels. This period coincides with a time of drought and increased fire frequency in the southernmost Coast Mountains. About 1300 14C years BP, the forest became more coastal in composition with abundant Tsuga heterophylla and Abies. An increase in Tsuga mertensiana pollen suggests the onset of cool and wet conditions by ca. 500 14C years BP, coincident with the Little Ice Age. The record of inferred climate change at Moraine Bog is broadly synchronous with other paleoclimate records from the Coast Mountains and, at the centennial scale, with records elsewhere in the world.


1990 ◽  
Vol 27 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J. R. Desloges ◽  
J. M. Ryder

The maximum Holocene extent of glaciers in the study area is marked by late Neoglacial (Little Ice Age) terminal moraines. Moraine stratigraphy and 14C dates from a small number of sites suggest that glacier advance, almost as extensive as that of the late Neoglacial, occurred about 2500 14C years BP, and that late Neoglacial advance began well before 770 14C years BP (or the thirteenth century A.D.); glacier termini then stood close to the position of the climax moraines for several centuries. Dates of stabilization of end moraines at 16 glaciers were determined by dendrochronology, with tree-ring counts corrected for sampling errors and ecesis. Most terminal moraines date from 1860 to 1900. Many recessional moraines were formed between 1900 and 1940, coincident with a regionally documented phase of cooler and wetter climate. The proposed chronology is similar to results from elsewhere in the Canadian Cordillera.


2013 ◽  
Vol 50 (6) ◽  
pp. 599-606 ◽  
Author(s):  
Kira M. Hoffman ◽  
Dan J. Smith

Retreating and downwasting glaciers in the British Columbia Coast Mountains are exposing the remains of forests buried during Holocene-age glacial advances. Despite recent progress in discerning the extent of these advances in the Pacific and Kitimat ranges of the southern and central Coast Mountains, comparatively little is known about the character of these advances in the Boundary Ranges of northwestern British Columbia. This research uses dendroglaciologic and radiocarbon analyses to describe late Holocene glacial advances at Bromley Glacier in the Cambria Icefield area. Four intervals of glacial expansion were identified at ca. 2470–2410, 1850, 1450, and 830 14C years BP. Absent were wood remains associated with mid-Holocene episodes of glacier expansion recorded at nearby sites. The late Holocene deposits described at Bromley Glacier are contemporaneous with those found at other glaciers in the southern Boundary Ranges and contribute to a growing understanding of the synchronous response of glaciers in this region to mass balance fluctuations during the Holocene.


2007 ◽  
Vol 44 (12) ◽  
pp. 1753-1773 ◽  
Author(s):  
Sandra M Allen ◽  
Dan J Smith

Bridge Glacier is a prominent eastward-flowing valley glacier located on the east side of the Pacific Ranges within the southern British Columbia Coast Mountains. The terminus of Bridge Glacier has retreated at rates up to 125 m/year over the last 50 years and currently calves into proglacial Bridge Lake. Field investigations of the recently deglaciated terrain and moraines led to the discovery of detrital boles and glacially sheared stumps. Dendroglaciological analyses of this subfossil wood produced five radiocarbon-controlled floating tree-ring chronologies. The relative age and stratigraphic location of these samples revealed that Bridge Glacier experienced at least four periods of significant advance during the late Holocene: a Tiedemann-aged advance ca. 3000 14C years BP, an unattributed advance ca. 1900 14C years BP, a first millennium advance ca. 1500 14C years BP, and a Little Ice Age advance beginning ca. 700 14C years BP. Lichenometric investigations at eight terminal and lateral moraine complexes identified early Little Ice Age moraine stabilization during the late 13th to early 14th centuries, with subsequent ice-front oscillations ending in the middle 15th, early 16th, middle to late 17th, early 18th, middle to late 19th, and early 20th centuries. These investigations build upon previous research and compliment recent geobotanical evidence emerging from other glaciers in this region that describe multiple late Holocene glacier advances. The discovery of a glacially sheared whitebark pine stump dating to 1500 ± 50 14C years BP provides irrevocable proof for an advance of Bridge Glacier during a time when glaciers throughout Pacific North America were also expanding.


Sign in / Sign up

Export Citation Format

Share Document