scholarly journals Landfast ice properties over the Beaufort Sea region in 2000-2019 from MODIS and Canadian Ice Service data

Author(s):  
Alexander P. Trishchenko ◽  
Vladimir Kostylev ◽  
Yi Luo ◽  
Calin Ungureanu ◽  
Dustin Whalen ◽  
...  

Two decades (2000-2019) of the landfast ice properties in the Beaufort Sea region in the Canadian Arctic were analyzed at 250-m spatial resolution from two sources: 1) monthly maps derived at the Canada Centre for Remote Sensing from the Moderate Resolution Imaging Spectroradiometer clear-sky satellite image composites; 2) Canadian Ice Service charts. Detailed comparisons have been conducted for the landfast ice spatial extent, the water depth at and the distance to the outer seaward edge from the coast in four sub-regions: 1) Alaska coast; 2) Barter Island to Herschel Island; 3) Mackenzie Bay; 4) Richards Island to Cape Bathurst. The results from both sources demonstrate good agreement. The average spatial extent for the entire region over the April-June period is 48.5 (±5.0)×10<sup>3</sup> km<sup>2</sup> from Canadian Ice Service data vs 45.1 (±6.1)×10<sup>3</sup> km<sup>2</sup> from satellite data used in this study (7.0% difference). The correlation coefficient for April-June is 0.73 (p = 2.91×10<sup>-4</sup>). The long term linear trends of the April-June spatial extent since 2000 demonstrated statistically significant decline: -4.45 (±1.69)×10<sup>3</sup> km<sup>2</sup>/decade and -4.73 (±2.17)×10<sup>3</sup> km<sup>2</sup>/decade from Canadian Ice Service and satellite data respectively. The landfast ice in the Beaufort Sea region showed the general tendency for an earlier break-up, later onset and longer ice-free period. The break-up date has decreased by 7.6 days/decade in the Mackenzie Bay region. The western part of the study area did not demonstrate statistically significant changes since 2000.

Author(s):  
Houaria Namaoui ◽  
Salem Kahlouche ◽  
Ahmed Hafidh Belbachir

Remote sensing of atmospheric water vapour using GNSS and Satellite data has become an efficient tool in meteorology and climate research. Many satellite data have been increasingly used to measure the content of water vapour in the atmosphere and to characterize its temporal and spatial variations. In this paper, we have used observations from radiosonde data collected from three stations (Algiers, Bechar and Tamanrasset) in Algeria from January to December 2012 to evaluate Moderate Resolution Imaging Spectroradiometer (MODIS) total precipitable water vapour (PWV) products. Results show strong agreement between the total precipitable water contents estimated based on radiosondes observations and the ones measured by the sensor MODIS with the correlation coefficients in the range 0.69 to 0.95 and a mean bias, which does not exceed 1.5.  


2019 ◽  
Author(s):  
Juan Huo ◽  
Daren Lu ◽  
Shu Duan ◽  
Yongheng Bi ◽  
Bo Liu

Abstract. To better understand the accuracy of cloud top heights (CTHs) derived from passive satellite data, ground-based Ka-band radar measurements from 2016 and 2017 in Beijing were compared with CTH data inferred from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Himawari Imager (AHI). Relative to the radar CTHs, the MODIS CTHs were found to be underestimated by −1.10 ± 2.53 km and 49 % of CTH differences were within 1.0 km. Like the MODIS results, the AHI CTHs were underestimated by −1.10 ± 2.27 km and 42 % were within 1.0 km. Both the MODIS and AHI retrieval accuracy depended strongly on the cloud depth (CD). Large differences were mainly occurring for the retrieval of thin clouds of CD  1 km, the CTH difference decreased to −0.48 ± 1.70 km for MODIS and to −0.76 ± 1.63 km for AHI. MODIS CTHs greater than 6 km showed better agreement with the radar data than those less than 4 km. Statistical analysis showed that the average AHI CTHs were lower than the average MODIS CTHs by −0.64 ± 2.36 km. The monthly accuracy of both retrieval algorithms was studied and it was found that the AHI retrieval algorithm had the largest bias in winter while the MODIS retrieval algorithm had the lowest accuracy in spring.


2017 ◽  
Vol 4 (2) ◽  
pp. 286
Author(s):  
Jajang Nuryana ◽  
I Gede Hendrawan ◽  
Widiastuti Karim

National Ocean Atmospheric Administrations (NOAA) by the program coral reef Watch (CRW) has developed a method to estimate the potential of coral bleaching using Sea Surface Temperature (SST). The products are hot spot (HS) and degree heating week (DHW). HS is the SST 1°C (SSTL?1) above normal and DHW is the length of HS inhabits a place. The CRW product do not provided detail informations because it has a lower resolution. It is need a satellite image with a higher resolution to provide better informations. One of the satellite images that can be used is Moderate Resolution Imaging Spectroradiometer (MODIS) with a spatial resolution of 1 km. The purpose of this study was to know HS and DHW distribution patterns and status of coral bleaching in Bali waters seen from the analysis of HS and DHW. MODIS data is used daily, then do mosaicing process to get a weekly SPL (8 daily) and the monthly SST. Monthly SPL normally used to get maximum montly mean (MMM). HS obtained from the difference between 8 daily weekly SST and SST normal (MMM).).Location bleaching based on data Coral Triangle Center (CTC) and coralwatch.org.  SST results revealed difference of SPL in 2015 and 2016 amounted to 1.48°C. Highest DHW in Bali Hai, Nusa Penida is 10 465° C-weeks in April 2016. Based on the value HS and DHW coral reefs in Bali waters threatened bleaching level Alert 1 and Alert level 2.


2017 ◽  
Author(s):  
Matthew W. Christensen ◽  
David Neubauer ◽  
Caroline Poulsen ◽  
Gareth Thomas ◽  
Greg McGarragh ◽  
...  

Abstract. Increased concentrations of aerosol can enhance the albedo of warm lowlevel cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3D radiative transfer) clouds. To screen for this contamination, we have developed a new 5 Cloud-Aerosol Pairing Algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along Track Scanning Radiometer (AATSR) and MODerate Resolution Imaging Spectroradiometer (MODIS) show a marked reduction in the strength of the intrinsic aerosol indirect forcing when selecting aerosol pairs that are located farther away from the clouds (−0.28 ± 0.26 W/m2) compared to those 10 including pairs that are within 15 km of the nearest cloud (−0.49 ± 0.18 W/m2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to including retrieval artefacts in the aerosol located near clouds.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Juan Huo ◽  
Daren Lu ◽  
Shu Duan ◽  
Yongheng Bi ◽  
Bo Liu

Abstract. To better understand the accuracy of cloud top heights (CTHs) derived from passive satellite data, ground-based Ka-band radar measurements from 2016 and 2017 in Beijing are compared with CTH data inferred from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Himawari Imager (AHI). Relative to the radar CTHs, the MODIS CTHs are found to be underestimated by−1.10 ± 2.53 km on average and 49 % of CTH differences are within 1.0 km. The AHI CTHs are underestimated by −1.10 ± 2.27 km and 42 % are within 1.0 km. Both the MODIS and AHI CTH retrieval accuracy depends strongly on the cloud depth (CD). Large differences are mainly due to the retrieval of thin clouds of CD <1 km, especially when the cloud base height is higher than 4 km. For clouds with CD >1 km, the mean CTH difference decreases to -0.48±1.70 km for MODIS and to -0.76±1.63 km for AHI. It is found that MODIS CTHs with higher values (i.e. >6 km) show smaller discrepancy with radar CTH than those MODIS CTHs with lower values (i.e. <4 km). Statistical analysis illustrate that the CTH difference between the two satellite instruments is lower than the difference between the satellite instrument and the ground-based Ka-band radar. The monthly accuracy of both CTH retrieval algorithms is investigated and it is found that summer has the smallest retrieval difference.


2006 ◽  
Vol 6 (4) ◽  
pp. 947-955 ◽  
Author(s):  
J. Quaas ◽  
O. Boucher ◽  
U. Lohmann

Abstract. Aerosol indirect effects are considered to be the most uncertain yet important anthropogenic forcing of climate change. The goal of the present study is to reduce this uncertainty by constraining two different general circulation models (LMDZ and ECHAM4) with satellite data. We build a statistical relationship between cloud droplet number concentration and the optical depth of the fine aerosol mode as a measure of the aerosol indirect effect using MODerate Resolution Imaging Spectroradiometer (MODIS) satellite data, and constrain the model parameterizations to match this relationship. We include here "empirical" formulations for the cloud albedo effect as well as parameterizations of the cloud lifetime effect. When fitting the model parameterizations to the satellite data, consistently in both models, the radiative forcing by the combined aerosol indirect effect is reduced considerably, down to −0.5 and −0.3 Wm−2, for LMDZ and ECHAM4, respectively.


2017 ◽  
Vol 17 (21) ◽  
pp. 13151-13164 ◽  
Author(s):  
Matthew W. Christensen ◽  
David Neubauer ◽  
Caroline A. Poulsen ◽  
Gareth E. Thomas ◽  
Gregory R. McGarragh ◽  
...  

Abstract. Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud–aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (−0.28±0.26 W m−2) compared to those including pairs that are within 15 km of the nearest cloud (−0.49±0.18 W m−2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.


2015 ◽  
Vol 9 (3) ◽  
pp. 2783-2820
Author(s):  
P. Muhammad ◽  
C. Duguay ◽  
K.-K. Kang

Abstract. This study involves the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 500 m snow products (MOD/MYD10A1), complemented with 250 m Level 1B data (MOD/MYD02QKM), to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that first day ice-off dates are observed between days of year (DOY) 115–125 and end DOY 145–155, resulting in average melt durations of about 30–40 days. Floating ice transported northbound could therefore generate multiple periods of ice-on and ice-off observations at the same geographic location. During the ice break-up period, ice melt was initiated by in situ (thermodynamic) melt over the drainage basin especially between 61–61.8° N (75–300 km). However, ice break-up process north of 61.8° N was more dynamically driven. Furthermore, years with earlier initiation of the ice break-up period correlated with above normal air temperatures and precipitation, whereas later ice break-up period was correlated with below normal precipitation and air temperatures. MODIS observations revealed that ice runs were largely influenced by channel morphology (islands and bars, confluences and channel constriction). It is concluded that the numerous MODIS daily overpasses possible with the Terra and Aqua polar orbiting satellites, provide a powerful means for monitoring ice break-up processes at multiple geographical locations simultaneously along the Mackenzie River.


2005 ◽  
Vol 5 (5) ◽  
pp. 9669-9690 ◽  
Author(s):  
J. Quaas ◽  
O. Boucher ◽  
U. Lohmann

Abstract. Aerosol indirect effects are considered to be the most uncertain yet important anthropogenic forcing of climate change. The goal of the present study is to reduce this uncertainty by constraining two different general circulation models (LMDZ and ECHAM4) with satellite data. We build a statistical relationship between cloud droplet number concentration and the optical depth of the fine aerosol mode as a measure of the aerosol indirect effect using MODerate Resolution Imaging Spectroradiometer (MODIS) satellite data, and constrain the model parameterizations to match this relationship. We include here ''empirical'' formulations for the cloud albedo effect as well as parameterizations of the cloud lifetime effect. When fitting the model parameterizations to the satellite data, consistently in both models, the radiative forcing by the combined aerosol indirect effect is reduced considerably, down to −0.5 and −0.3 Wm-2, for LMDZ and ECHAM4, respectively.


Sign in / Sign up

Export Citation Format

Share Document