Consistent differential resource use by sympatric lake (Coregonus clupeaformis) and round (Prosopium cylindraceum) whitefish in Lake Huron: a multi-time scale isotopic niche analysis

2016 ◽  
Vol 73 (7) ◽  
pp. 1072-1080 ◽  
Author(s):  
Rebecca L. Eberts ◽  
Björn Wissel ◽  
Richard G. Manzon ◽  
Joanna Y. Wilson ◽  
Douglas R. Boreham ◽  
...  

Lake (Coregonus clupeaformis) and round (Prosopium cylindraceum) whitefish are sympatric benthivores in Lake Huron that are thought to coexist via niche partitioning. However, little is known about long-term resource use and niche overlap across different temporal scales. We used a multiyear (2010–2012) and multi-tissue (liver, muscle, and bone layers) isotopic niche analysis to characterize and compare resource use by lake and round whitefish across several time scales. Lake whitefish consistently used more diverse, 13C-depleted (mean δ13C = −21.9‰) and 15N-enriched (mean δ15N = +9.3‰) resources than round whitefish (mean δ13C = −18.2‰; mean δ15N = +8.3‰). Niche overlap occurred only in liver, representing the spawning period, while niche segregation was highest in juvenile life stages. Individuals of both species made variable resource shifts among time periods, suggesting that spawning aggregations are composed of individuals representing a variety of feeding strategies and locations. Our study confirms that differential resource use is an important strategy for these fish as adults and demonstrates life-long niche partitioning beginning before age-2.

Author(s):  
Benjamin A. Turschak ◽  
Charles R. Bronte ◽  
Sergiusz J. Czesny ◽  
Brandon S. Gerig ◽  
Austin Happel ◽  
...  

Stable isotope analyses offer a useful means for quantifying ecological niche dimensions, though few studies have examined isotopic response of an ecological community with respect to resource gradients such as fluctuations in prey availability. Stable carbon and nitrogen isotopes were measured for Lake Michigan salmonines and their prey collected from 2014 to 2016. Bayesian ellipse and mixing model analyses were used to quantify isotopic niche characteristics and diets, respectively, among species and years. During the three-year study period, abundance and size structure of preferred alewife prey changed substantially and offered an opportunity to explore predator isotopic niche response and diet shifts along a prey resource gradient. Results suggested increased reliance on alewives, especially small alewives, over the study period and were consistent with greater availability of this prey. However, differential use of alewife size classes and alternative prey sources by salmonine predators was apparent, which suggested possible resource partitioning. Characterization of ecological niche overlap using stable isotopes likely requires consideration of shared resource availability as well as specific prey and habitat preferences.


2017 ◽  
Vol 15 (2) ◽  
Author(s):  
Bruno E. Soares ◽  
Daniela C. O. Rosa ◽  
Nathália C. S. Silva ◽  
Miriam P. Albrecht ◽  
Érica P. Caramaschi

ABSTRACT Fishes of the order Gymnotiformes have high diversity of oral and head morphology, which suggests trophic specializations within each clade. The aim of this study was to describe resource use patterns by two fish species (Gymnorhamphichthys rondoni and Gymnotus coropinae) in the National Forest Saracá-Taquera, Oriximiná - Pará, analyzing microhabitat use, diet composition, feeding strategies, niche breadth and niche overlap. Stomach contents of 101 individuals (41 G. rondoni and 60 G. coropinae), sampled in 23 headwater streams were analyzed and volume of food items was quantified to characterize their feeding ecology. Gymnorhamphichthys rondoni was captured mainly on sandy bottoms, whereas G. coropinae in crevices. Both species had a zoobenthivorous diet and consumed predominantly Sediment/Detritus and Diptera larvae, but also included allochthonous prey in their diet. These species had high niche overlap, with small variations related to the higher consumption of Ceratopogonidae larvae by G. rondoni and of Chironomidae larvae by G. coropinae. Both species had a generalist feeding strategy, but G. coropinae had a broader niche breadth. Our results demonstrate that G. rondoni and G. coropinae occupy different microhabitats but rely on similar food resources.


2017 ◽  
Vol 51 (3) ◽  
pp. 435-448 ◽  
Author(s):  
Austin J. Gallagher ◽  
David S. Shiffman ◽  
Evan E. Byrnes ◽  
C. M. Hammerschlag-Peyer ◽  
N. Hammerschlag

2020 ◽  
Vol 636 ◽  
pp. 107-121
Author(s):  
SEM Munroe ◽  
CL Rigby ◽  
NE Hussey

Quantifying the trophic structure and interactions of deepwater (>200 m depth) elasmobranch assemblages is required to improve our understanding of deepwater ecosystems and the impacts of increased deepwater exploitation. To this end, we investigated the trophic ecology of deepwater elasmobranchs on the Great Barrier Reef (GBR) using a stable isotope (δ13C and δ15N) approach. Our study included 4 species captured in the southern GBR deepwater eastern king prawn trawl fishery: the eastern spotted gummy shark Mustelus walkeri, the piked spurdog Squalus megalops, the pale spotted catshark Asymbolus pallidus, and the Argus skate Dentiraja polyommata. The δ13C and δ15N values of all 4 species ranged from -18.6 to -16.2‰ and 8.3 to 13.8‰, respectively. The small δ13C range was likely due to the limited number of unique carbon baseline sources typically found in deepwater environments. Despite this, 3 of the 4 species exhibited relatively low core (40% SEAb) isotopic niche overlap (<1 to 44%). Isotopic niche separation may be driven by multiple interacting factors including morphology, feeding strategies, or resource partitioning to reduce competition. Isotope analysis also provided evidence for intraspecific variation; S. megalops, D. polyommata and M. walkeri exhibited significant increases in δ15N (~3‰) and δ13C (~2‰) with size. Latitude, longitude, and depth had statistically significant but comparatively minor effects on isotope values (≤1‰) of the 4 species. Cumulatively, our results indicate that isotopic variation among deepwater elasmobranchs on the GBR is principally driven by size and species-level differences in resource use.


2010 ◽  
Vol 6 (5) ◽  
pp. 711-714 ◽  
Author(s):  
Hannah B. Vander Zanden ◽  
Karen A. Bjorndal ◽  
Kimberly J. Reich ◽  
Alan B. Bolten

Individual variation in resource use has often been ignored in ecological studies, but closer examination of individual patterns through time may reveal significant intrapopulation differences. Adult loggerhead sea turtles ( Caretta caretta ) are generalist carnivores with a wide geographical range, resulting in a broad isotopic niche. We microsampled scute, a persistent and continuously growing tissue, to examine long-term variation in resource use (up to 12 years) in 15 nesting loggerhead turtles. Using stable isotopes of nitrogen and carbon, we examined the resource use patterns (integration of diet, habitat and geographical location) and demonstrate that individual loggerheads are long-term specialists within a generalist population. We present our results in the context of a conceptual model comparing isotopic niches in specialist and generalist populations. Individual consistency may have important ecological, evolutionary and conservation consequences, such as the reduction of intraspecific competition.


2017 ◽  
Vol 74 (9) ◽  
pp. 1411-1421
Author(s):  
Christine K. Weldrick ◽  
Dennis E. Jelinski

A poorly understood food web dynamic concerns possible seasonal variation in spatial subsidies associated with multi-trophic aquaculture and their effects on extractive and naturally occurring organisms. We used the stable isotopes δ13C and δ15N and circular statistics to investigate niche overlap across a year-long period at an experimental multi-trophic aquaculture facility in British Columbia, Canada. A two-source mixing model revealed that particulate organic matter was the most important food source for all sample invertebrates (mean range 40%–98%) compared with farm effluent (mean range 3%–35%). There were significant month-to-month changes in δ13C and δ15N for all species except for the brooding transparent tunicate (Corella inflata). We did not detect any directionality for the entire community, but did identify variable directional shifts for each species, suggesting resource partitioning driven by competition and (or) morphology-based differences in feeding strategies. This was further supported by seasonal variation in inter- and intraspecific isotopic niche widths. Isotopic niche overlap among co-occurring invertebrates appeared to be stronger during winter and summer than autumn months. Our study provides valuable insights on the role of multi-trophic derived effluent on a nearshore marine community composed of both natural and cultured species within the same feeding guild.


2014 ◽  
Vol 15 (2) ◽  
pp. 287 ◽  
Author(s):  
E. KALOGIANNI ◽  
S. GIAKOUMI ◽  
A. ANDRIOPOULOU ◽  
Y. CHATZINIKOLAOU

Non native freshwater fish species have been long implicated in the decline of native Mediterranean ichthyofauna, through hybridization, disease transmission, competition for food and habitat, predation and/or ecosystem alteration; our knowledge, however, on the underlying mechanisms of these ecological impacts remains very limited. To explore the potential for trophic competition between the widespread Eastern mosquitofish Gambusia holbrooki and its co-occurring native toothcarp Valencia letourneuxi we compared resource use, feeding strategies, trophic selectivities and diet niche overlap. For this purpose, we studied two populations of the two species from a freshwater and a brackish habitat respectively, characterized by different food resource availabilities. In both habitats, the mosquitofish consumed a greater diversity of invertebrates and preyed on terrestrial invertebrates more frequently than the native toothcarp. Furthermore, in the less diverse and less rich brackish habitat, the non native relied heavily on plant material to balance a decrease in animal prey consumption and modified its individual feeding strategy, whereas these adaptive changes were not apparent in the native species. Their diet overlapped, indicating trophic competition, but this overlap was affected by resource availability variation; in the freshwater habitat, there was limited overlap in their diet, whereas in the brackish habitat, their diets and prey selectivities converged and there was high overlap in resource use, indicative of intense interspecific trophic competition. Overall, it appears that the underlying mechanism of the putative negative impacts of the mosquitofish on the declining Corfu toothcarp is mainly trophic competition, regulated by resource variability, though there is also evidence of larvae predation by the mosquitofish.


2012 ◽  
Vol 33 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Hervé Lelièvre ◽  
Pierre Legagneux ◽  
Gabriel Blouin-Demers ◽  
Xavier Bonnet ◽  
Olivier Lourdais

In many organisms, including snakes, trophic niche partitioning is an important mechanism promoting species coexistence. In ectotherms, feeding strategies are also influenced by lifestyle and thermoregulatory requirements: active foragers tend to maintain high body temperatures, expend more energy, and thus necessitate higher energy income. We studied diet composition and trophic niche overlap in two south European snakes (Hierophis viridiflavus and Zamenis longissimus) in the northern part of their range. The two species exhibit contrasted thermal adaptations, one being highly mobile and thermophilic (H. viridiflavus) and the other being elusive with low thermal needs (Z. longissimus). We analyzed feeding rate (proportion of snakes with indication of a recent meal) and examined more than 300 food items (fecal pellets and stomach contents) in 147 Z. longissimus and 167 H. viridiflavus. There was noticeable overlap in diet (overlap of Z. longissimus on H. viridiflavus = 0.62; overlap of H. viridiflavus on Z. longissimus = 0.80), but the similarity analyses showed some divergence in diet composition. Dietary spectrum was wider in H. viridiflavus, which fed on various mammals, birds, reptiles, and arthropods whereas Z. longissimus was more specialized on mammals and birds. The more generalist nature of H. viridiflavus was consistent with its higher energy requirements. In contrast to our expectation, feeding rate was apparently higher in Z. longissimus than in H. viridiflavus, but this could be an artifact of a longer transit time in Z. longissimus, given its lower mean body temperature. These results allow a better understanding of the ability to coexist in snakes belonging to temperate climate colubrid communities.


Sign in / Sign up

Export Citation Format

Share Document