scholarly journals Seasonal dynamics in a nearshore isotopic niche and spatial subsidies from multi-trophic aquaculture

2017 ◽  
Vol 74 (9) ◽  
pp. 1411-1421
Author(s):  
Christine K. Weldrick ◽  
Dennis E. Jelinski

A poorly understood food web dynamic concerns possible seasonal variation in spatial subsidies associated with multi-trophic aquaculture and their effects on extractive and naturally occurring organisms. We used the stable isotopes δ13C and δ15N and circular statistics to investigate niche overlap across a year-long period at an experimental multi-trophic aquaculture facility in British Columbia, Canada. A two-source mixing model revealed that particulate organic matter was the most important food source for all sample invertebrates (mean range 40%–98%) compared with farm effluent (mean range 3%–35%). There were significant month-to-month changes in δ13C and δ15N for all species except for the brooding transparent tunicate (Corella inflata). We did not detect any directionality for the entire community, but did identify variable directional shifts for each species, suggesting resource partitioning driven by competition and (or) morphology-based differences in feeding strategies. This was further supported by seasonal variation in inter- and intraspecific isotopic niche widths. Isotopic niche overlap among co-occurring invertebrates appeared to be stronger during winter and summer than autumn months. Our study provides valuable insights on the role of multi-trophic derived effluent on a nearshore marine community composed of both natural and cultured species within the same feeding guild.

2016 ◽  
Vol 73 (7) ◽  
pp. 1072-1080 ◽  
Author(s):  
Rebecca L. Eberts ◽  
Björn Wissel ◽  
Richard G. Manzon ◽  
Joanna Y. Wilson ◽  
Douglas R. Boreham ◽  
...  

Lake (Coregonus clupeaformis) and round (Prosopium cylindraceum) whitefish are sympatric benthivores in Lake Huron that are thought to coexist via niche partitioning. However, little is known about long-term resource use and niche overlap across different temporal scales. We used a multiyear (2010–2012) and multi-tissue (liver, muscle, and bone layers) isotopic niche analysis to characterize and compare resource use by lake and round whitefish across several time scales. Lake whitefish consistently used more diverse, 13C-depleted (mean δ13C = −21.9‰) and 15N-enriched (mean δ15N = +9.3‰) resources than round whitefish (mean δ13C = −18.2‰; mean δ15N = +8.3‰). Niche overlap occurred only in liver, representing the spawning period, while niche segregation was highest in juvenile life stages. Individuals of both species made variable resource shifts among time periods, suggesting that spawning aggregations are composed of individuals representing a variety of feeding strategies and locations. Our study confirms that differential resource use is an important strategy for these fish as adults and demonstrates life-long niche partitioning beginning before age-2.


2020 ◽  
Vol 636 ◽  
pp. 107-121
Author(s):  
SEM Munroe ◽  
CL Rigby ◽  
NE Hussey

Quantifying the trophic structure and interactions of deepwater (>200 m depth) elasmobranch assemblages is required to improve our understanding of deepwater ecosystems and the impacts of increased deepwater exploitation. To this end, we investigated the trophic ecology of deepwater elasmobranchs on the Great Barrier Reef (GBR) using a stable isotope (δ13C and δ15N) approach. Our study included 4 species captured in the southern GBR deepwater eastern king prawn trawl fishery: the eastern spotted gummy shark Mustelus walkeri, the piked spurdog Squalus megalops, the pale spotted catshark Asymbolus pallidus, and the Argus skate Dentiraja polyommata. The δ13C and δ15N values of all 4 species ranged from -18.6 to -16.2‰ and 8.3 to 13.8‰, respectively. The small δ13C range was likely due to the limited number of unique carbon baseline sources typically found in deepwater environments. Despite this, 3 of the 4 species exhibited relatively low core (40% SEAb) isotopic niche overlap (<1 to 44%). Isotopic niche separation may be driven by multiple interacting factors including morphology, feeding strategies, or resource partitioning to reduce competition. Isotope analysis also provided evidence for intraspecific variation; S. megalops, D. polyommata and M. walkeri exhibited significant increases in δ15N (~3‰) and δ13C (~2‰) with size. Latitude, longitude, and depth had statistically significant but comparatively minor effects on isotope values (≤1‰) of the 4 species. Cumulatively, our results indicate that isotopic variation among deepwater elasmobranchs on the GBR is principally driven by size and species-level differences in resource use.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


2019 ◽  
Vol 18 (8) ◽  
pp. 581-597 ◽  
Author(s):  
Ambreen Fatima ◽  
Yasir Hasan Siddique

Flavonoids are naturally occurring plant polyphenols found universally in all fruits, vegetables and medicinal plants. They have emerged as a promising candidate in the formulation of treatment strategies for various neurodegenerative disorders. The use of flavonoid rich plant extracts and food in dietary supplementation have shown favourable outcomes. The present review describes the types, properties and metabolism of flavonoids. Neuroprotective role of various flavonoids and the possible mechanism of action in the brain against the neurodegeneration have been described in detail with special emphasis on the tangeritin.


2018 ◽  
Vol 6 (1) ◽  
pp. 45-56
Author(s):  
Lalrinzuali Sailo ◽  
◽  
Meesala Krishna Murthy ◽  
Khandayataray Pratima ◽  
Vikas Kumar Roy ◽  
...  

Monosodium glutamate is naturally available non-essential amino acids, which found in naturally occurring foods and used as flavour enhancer worldwide. Monosodium glutamate is believed to be linked with diverse health problems. The aim of the study was toxic effects of monosodium glutamate (MSG) and the protective role of L-carnitine, light on the available literature from last 25 years about diverse toxicity studies which had been carried out on animal and human models. Google scholar, NCBI, PUBMED, EMBASE, Wangfang databases, and Web of Science databases were used to retrieve the available studies. MSG was linked with deleterious effects particularly in animals including induction of obesity, diabetes, hepatotoxic, neurotoxic and genotoxic effects showed in Literature. Few reports revealed increased hunger, food intake, and obesity in human subjects due to MSG consumption. Hepatotoxic, neurotoxic, and genotoxic effects of monosodium glutamate on humans carried out very limitedly. High consumption of monosodium glutamate may be linked with harmful health effects showed in available literatures. So, it is recommended to use common salt instead of MSG. Furthermore, intensive research is required to explore monosodium glutamate–related molecular and metabolic mechanisms. L-carnitine can protect from Hepatotoxic, neurotoxic, renal impairment and genotoxic effects functionally, biochemically and histopathologically with a corresponding reduction of oxidative stress.


2021 ◽  
pp. 089331892199807
Author(s):  
Jonathan Clifton ◽  
Fernando Fachin ◽  
François Cooren

To date there has been little work that uses fine-grained interactional analyses of the in situ doing of leadership to make visible the role of non-human as well as human actants in this process. Using transcripts of naturally-occurring interaction as data, this study seeks to show how leadership is co-achieved by artefacts as an in-situ accomplishment. To do this we situate this study within recent work on distributed leadership and argue that it is not only distributed across human actors, but also across networks that include both human and non-human actors. Taking a discursive approach to leadership, we draw on Actor Network Theory and adopt a ventriloquial approach to sociomateriality as inspired by the Montreal School of organizational communication. Findings indicate that artefacts “do” leadership when a hybrid presence is made relevant to the interaction and when this presence provides authoritative grounds for influencing others to achieve the group’s goals.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 418
Author(s):  
Viola Zentrichová ◽  
Alena Pechová ◽  
Simona Kovaříková

The intent of this review is to summarize the knowledge about selenium and its function in a dog’s body. For this purpose, systematic literature search was conducted. For mammals, including dogs, a balanced diet and sufficient intake of selenium are important for correct function of metabolism. As for selenium poisoning, there are no naturally occurring cases known. Nowadays, we do not encounter clinical signs of its deficiency either, but it can be subclinical. For now, the most reliable method of assessing selenium status of a dog is measuring serum or plasma levels. Levels in full blood can be measured too, but there are no reference values. The use of glutathione peroxidase as an indirect assay is questionable in canines. Commercial dog food manufactures follow recommendations for minimal and maximal selenium levels and so dogs fed commercial diets should have balanced intake of selenium. For dogs fed home-made diets, complex data are missing. However, subclinical deficiency seems to affect, for example, male fertility or recovery from parasitical diseases. Very interesting is the role of selenium in prevention and treatment of cancer.


Author(s):  
Mayara P. Neves ◽  
Pavel Kratina ◽  
Rosilene L. Delariva ◽  
J. Iwan Jones ◽  
Clarice B. Fialho

AbstractCoexistence of ecomorphologically similar species in diverse Neotropical ecosystems has been a focus of long-term debate among ecologists and evolutionary biologists. Such coexistence can be promoted by trophic plasticity and seasonal changes in omnivorous feeding. We combined stomach content and stable isotope analyses to determine how seasonal variation in resource availability influences the consumption and assimilation of resources by two syntopic fish species, Psalidodon aff. gymnodontus and P. bifasciatus, in the Lower Iguaçu basin. We also tested the impact of seasonality on trophic niche breadth and diet overlap of these two dominant omnivores. Seasonal changes in resource availability strongly influenced the consumption and assimilation of resources by the two fish species. Both species exhibited high levels of omnivory, characterized by high diversity of allochthonous resources in the wet season. Terrestrial invertebrates were the main component of diet during this season. However, in the dry season, both species reduced their isotopic niches, indicating diet specialization. High diet overlap was observed in both seasons, but the isotopic niche overlap was smaller in the dry season. Substantial reduction in the isotopic niche of P. bifascistus and a shift toward aquatic invertebrates can facilitate coexistence during this season of resource shortage. Feeding plasticity allows omnivorous fish to adjust their trophic niches according to seasonality, promoting the exploitation of different resources during periods of greater resource diversity. This seasonal variation could be an important mechanism that contributes to the resource partitioning and coexistence of dominant omnivores in Neotropical streams.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 928
Author(s):  
Micah Flor V. Montefalcon ◽  
Meliton R. Chiong ◽  
Augustus C. Resurreccion ◽  
Sergi Garcia-Segura ◽  
Joey D. Ocon

Arsenic (As) is a naturally occurring element in the environment that poses significant risks to human health. Several treatment technologies have been successfully used in the treatment of As-contaminated waters. However, limited literature has explored advanced electrocoagulation (EC) processes for As removal. The present study evaluates the As removal performance of electrocoagulation, electrochemical peroxidation (ECP), and photo-assisted electrochemical peroxidation (PECP) technologies at circumneutral pH using electroactive iron electrodes. The influence of As speciation and the role of oxidants in As removal were investigated. We have identified the ECP process to be a promising alternative for the conventional EC with around 4-fold increase in arsenic removal capacity at a competitive cost of 0.0060 $/m3. Results also indicated that the rate of As(III) oxidation at the outset of electrochemical treatment dictates the extent of As removal. Both ECP and PECP processes reached greater than 96% As(III) conversion at 1 C/L and achieved 86% and 96% As removal at 5 C/L, respectively. Finally, the mechanism of As(III) oxidation was evaluated, and results showed that Fe(IV) is the intermediate oxidant generated in advanced EC processes, and the contribution of •OH brought by UV irradiation is insignificant.


Sign in / Sign up

Export Citation Format

Share Document