Male lake sturgeon (Acipenser fulvescens) migratory and spawning behaviors are associated with sperm quality and reproductive success

2020 ◽  
Vol 77 (12) ◽  
pp. 1943-1959
Author(s):  
Douglas L. Larson ◽  
Jacob G. Kimmel ◽  
Joseph J. Riedy ◽  
Jonathan Hegna ◽  
Edward A. Baker ◽  
...  

Intra-annual reproductive investments may not be predictive of male reproductive success because of the effects of intra- and intersexual interactions on sperm depletion. For long-lived iteroparous fish species such as lake sturgeon (Acipenser fulvescens), reproductive effort may affect lifetime reproductive success. Radio frequency identification antennas were placed at the mouth of the Upper Black River, Michigan, and downstream of spawning locations to quantify male migratory and mating behaviors, including upstream migration time (UT), river residence time (RT), number of intra-annual spawning migrations (IM), interannual spawning interval, and operational sex ratio during 2017–2018. Computer assisted sperm analysis was used to quantify sperm quality. RT had a strong negative influence on sperm concentration and with measures of sperm quality. RT and the number of females encountered were positively associated with male reproductive success (number of offspring sired) across years. RT, IM, and UT were negatively associated with sperm quality, indicating sperm depletion is a reliable measure of sexual activity. Results demonstrate trade-offs between benefits and costs associated with current reproductive effort on future reproduction.

2019 ◽  
Vol 76 (7) ◽  
pp. 1147-1160 ◽  
Author(s):  
Kari J. Dammerman ◽  
Molly A.H. Webb ◽  
Kim T. Scribner

Abiotic conditions and demographic factors can influence the timing of spawning. Behavioral plasticity allows females to select spawning conditions that are conducive to offspring development; however, reproductive costs associated with delaying spawning are not well understood. In this study, factors influencing timing of female spawning, residence time (RT), and reproductive success (RS) during two seasons were determined, and plasma testosterone concentrations were used to quantify atretic rates in a wild, lake sturgeon (Acipenser fulvescens) population. For the 123 females monitored, RT ranged from 1 to 23 days and was influenced by arrival date, temperature, discharge, and male number, with the latter having the largest influence. RS varied due to arrival date, temperature, discharge, male number, male length, and operational sex ratio. Two females had testosterone levels indicative of atresia and RS estimates lower than yearly means; however, most females had normal ovaries, suggesting little reproductive costs of plasticity in spawning ground residency time. Results demonstrate the multitude of factors influencing female reproductive behavior and RS, highlighting the importance of abiotic and demographic conditions to recruitment in wild populations.


2016 ◽  
Vol 283 (1843) ◽  
pp. 20161883 ◽  
Author(s):  
Viola Pavlova ◽  
Jacob Nabe-Nielsen ◽  
Rune Dietz ◽  
Christian Sonne ◽  
Volker Grimm

Polar bears ( Ursus maritimus ) from East Greenland and Svalbard exhibited very high concentrations of polychlorinated biphenyls (PCBs) in the 1980s and 1990s. In Svalbard, slow population growth during that period was suspected to be linked to PCB contamination. In this case study, we explored how PCBs could have impacted polar bear population growth and/or male reproductive success in Svalbard during the mid-1990s by reducing the fertility of contaminated males. A dose–response relationship linking the effects of PCBs to male polar bear fertility was extrapolated from studies of the effects of PCBs on sperm quality in rodents. Based on this relationship, an individual-based model of bear interactions during the breeding season predicted fertilization success under alternative assumptions regarding male–male competition for females. Contamination reduced pregnancy rates by decreasing the availability of fertile males, thus triggering a mate-finding Allee effect, particularly when male–male competition for females was limited or when infertile males were able to compete with fertile males for females. Comparisons of our model predictions on age-dependent reproductive success of males with published empirical observations revealed that the low representation of 10–14-year-old males among breeding males documented in Svalbard in mid-1990s could have resulted from PCB contamination. We conclude that contamination-related male infertility may lead to a reduction in population growth via an Allee effect. The magnitude of the effect is largely dependent on the population-specific mating system. In eco-toxicological risk assessments, appropriate consideration should therefore be given to negative effects of contaminants on male fertility and male mating behaviour.


2006 ◽  
Vol 273 (1593) ◽  
pp. 1443-1448 ◽  
Author(s):  
Alberto Velando ◽  
Hugh Drummond ◽  
Roxana Torres

This study reports an experimental confirmation of the terminal investment hypothesis, a longstanding theoretical idea that animals should increase their reproductive effort as they age and their prospects for survival and reproduction decline. Previous correlational and experimental attempts to test this hypothesis have yielded contradictory results. In the blue-footed booby, Sula nebouxii , a long-lived bird, after initial increase, male reproductive success declines progressively with age. Before laying, males of two age classes were challenged with lipopolysaccharide to elicit an immune response, which induced symptoms of declining survival prospects. Reproductive success of immune-challenged mature males fell, while that of immune-challenged old males showed a 98% increase. These results demonstrate that senescent males with poor reproductive prospects increase their effort when those prospects are threatened, whereas younger males with good reproductive prospects do not.


2021 ◽  
Author(s):  
◽  
McKenzie Grace Tornquist

<p>Identifying sources of individual variation in reproductive success has been a longstanding challenge for evolutionary ecologists. Reproductive success among individuals can be due to several factors such as competition between conspecifics for nest sites and mating partners, mate choice, or by the physical environment. Reproductive success, particularly among males, can be extremely diverse both within and between species and determining which components contribute to success can be particularly challenging. In this thesis, I investigated patterns and drivers of reproductive success in a temperate marine reef fish, Forsterygion lapillum (the common triplefin). Specifically, I examined how male quality, nest quality, and female choice influence male reproductive success. Additionally, I quantified male reproductive success during the winter and summer of the breeding season to examine the temporal dynamics of breeding success in F. lapillum.   Selection of mates by females can be driven by the quality and behavioural attributes of the male or by the quality of resources offered. In Chapter 2, using field-based observations, combined with a lab-based study, I evaluated the effects of different male traits and nest characteristics on female choice and male reproductive success. Specifically, I observed egg guarding males in the field during the breeding season and recorded their phenotypic traits, behaviours, and nest characteristics. I then examined their influence on 3 different components of male reproductive success (brood size, individual egg size, and mate attraction). Additionally, I conducted dichotomous choice tests in the laboratory to evaluate female preference for different sized males, holding different sized nests. In the field, I did not detect a significant relationship between male mating success and male total length or nest size. Brood size and individual egg size were highly variable among sampled males, however, further factors such as courtship frequency, and the number of interactions with potential predators did not explain any additional variation. The number of agonistic displays performed by egg guarding males was the only factor to influence egg size, however, it had no direct impact on brood size or mate attraction. On the contrary, results from the laboratory experiment suggested that male total length and nest size were important during female choice. Females were attracted to and spawned more frequently with larger males holding larger nests. Additionally, females showed a particular preference towards males that displayed intense courtship behaviours. These results suggest that variation in reproductive success among individuals is not random in the common triplefin (F. lapillum) and may be due to a range of complex factors.  In natural systems, individual variation in mating success is known to be highly dynamic and vary over time. In Chapter 3, I addressed 3 questions related to reproductive success in male common triplefin: 1) Does the operational sex ratio (OSR) and the density of individuals change predictably within the breeding season? 2) Does male reproductive success change within the breeding season? And 3) Does the age and growth rate of successful males change within the breeding season? To address these questions, I sampled a population of F. lapillum during two periods of the breeding season and quantified a set of morphological and physical traits. Furthermore, I reconstructed individual life histories from the otoliths of egg guarding males. My results show that the density of individuals in the population increased during the summer months, but the operational sex ratio (OSR) remained male-biased. Male reproductive success in terms of brood size and average egg size did not fluctuate during the sampling period. However, the size of males and the size of the nest (cobblestone) held by males was significantly larger in summer compared to winter. Interestingly, successful males sampled in the winter had hatched significantly earlier than successful males sampled in the summer, but their average growth rate remained similar. These findings indicate that variation in male traits across the breeding season plays an important role in female mate choice. The mating system and pool of mating individuals in the common triplefin (F. lapillum) is highly dynamic over the year and has the potential to shape the success of individuals.   Overall, this study emphasizes the importance of considering multiple cues and temporal dynamics when disentangling the determinants of individual reproductive success. These findings suggest that male-male competition and female mate choice have a significant influence on male reproductive success. The reproductive ecology of F. lapillum is highly complex and my research has provided valuable insight into its dynamic nature. These results may apply to other species with male parental care and provides an important contribution towards understanding sexual selection and the evolution of mating systems with male parental care.</p>


2021 ◽  
Author(s):  
◽  
McKenzie Grace Tornquist

<p>Identifying sources of individual variation in reproductive success has been a longstanding challenge for evolutionary ecologists. Reproductive success among individuals can be due to several factors such as competition between conspecifics for nest sites and mating partners, mate choice, or by the physical environment. Reproductive success, particularly among males, can be extremely diverse both within and between species and determining which components contribute to success can be particularly challenging. In this thesis, I investigated patterns and drivers of reproductive success in a temperate marine reef fish, Forsterygion lapillum (the common triplefin). Specifically, I examined how male quality, nest quality, and female choice influence male reproductive success. Additionally, I quantified male reproductive success during the winter and summer of the breeding season to examine the temporal dynamics of breeding success in F. lapillum.   Selection of mates by females can be driven by the quality and behavioural attributes of the male or by the quality of resources offered. In Chapter 2, using field-based observations, combined with a lab-based study, I evaluated the effects of different male traits and nest characteristics on female choice and male reproductive success. Specifically, I observed egg guarding males in the field during the breeding season and recorded their phenotypic traits, behaviours, and nest characteristics. I then examined their influence on 3 different components of male reproductive success (brood size, individual egg size, and mate attraction). Additionally, I conducted dichotomous choice tests in the laboratory to evaluate female preference for different sized males, holding different sized nests. In the field, I did not detect a significant relationship between male mating success and male total length or nest size. Brood size and individual egg size were highly variable among sampled males, however, further factors such as courtship frequency, and the number of interactions with potential predators did not explain any additional variation. The number of agonistic displays performed by egg guarding males was the only factor to influence egg size, however, it had no direct impact on brood size or mate attraction. On the contrary, results from the laboratory experiment suggested that male total length and nest size were important during female choice. Females were attracted to and spawned more frequently with larger males holding larger nests. Additionally, females showed a particular preference towards males that displayed intense courtship behaviours. These results suggest that variation in reproductive success among individuals is not random in the common triplefin (F. lapillum) and may be due to a range of complex factors.  In natural systems, individual variation in mating success is known to be highly dynamic and vary over time. In Chapter 3, I addressed 3 questions related to reproductive success in male common triplefin: 1) Does the operational sex ratio (OSR) and the density of individuals change predictably within the breeding season? 2) Does male reproductive success change within the breeding season? And 3) Does the age and growth rate of successful males change within the breeding season? To address these questions, I sampled a population of F. lapillum during two periods of the breeding season and quantified a set of morphological and physical traits. Furthermore, I reconstructed individual life histories from the otoliths of egg guarding males. My results show that the density of individuals in the population increased during the summer months, but the operational sex ratio (OSR) remained male-biased. Male reproductive success in terms of brood size and average egg size did not fluctuate during the sampling period. However, the size of males and the size of the nest (cobblestone) held by males was significantly larger in summer compared to winter. Interestingly, successful males sampled in the winter had hatched significantly earlier than successful males sampled in the summer, but their average growth rate remained similar. These findings indicate that variation in male traits across the breeding season plays an important role in female mate choice. The mating system and pool of mating individuals in the common triplefin (F. lapillum) is highly dynamic over the year and has the potential to shape the success of individuals.   Overall, this study emphasizes the importance of considering multiple cues and temporal dynamics when disentangling the determinants of individual reproductive success. These findings suggest that male-male competition and female mate choice have a significant influence on male reproductive success. The reproductive ecology of F. lapillum is highly complex and my research has provided valuable insight into its dynamic nature. These results may apply to other species with male parental care and provides an important contribution towards understanding sexual selection and the evolution of mating systems with male parental care.</p>


2021 ◽  
Author(s):  
Seoghyun Kim ◽  
Mevin B. Hooten ◽  
Tanya L. Darden ◽  
Yoichiro Kanno

Abstract Nest construction is an energetically costly behavior displayed by males in many taxa. In some species, males construct nests and co-breed with other males and they may construct multiple nests in a breeding season. However, little is understood about how allocation of effort within and among nests affects male reproductive success. We characterized reproductive effort of male bluehead chub (Nocomis leptocephalus) on nests in an entire breeding season using PIT antennas deployed around nests and linked effort within and among nests to reproductive success, measured by number of offspring assigned genetically to each male, in a small stream in South Carolina, USA. We monitored time spent by a total of 34 males on each of 18 nests during the spawning season in 2017. A Bayesian hierarchical analysis showed that larger males spent more time constructing and maintaining a given nest, and consequently were more reproductively successful than smaller males on the same nest. Combined with aggressive behavior displayed by larger males toward smaller males, this finding suggested that reproductive effort including agonistic interactions within nests was a determinant of reproductive success. In contrast, more males together constructed larger nests, which led to higher reproductive success of members that constructed those nests. Number of nests that male constructed, a measure of effort across nests, was not a predictor of reproductive success, indicating that reproductive success varied among nests due to nest size. Our study showed that male reproductive success was determined by both aggressive and cooperative behaviors in a co-breeding species.


2009 ◽  
Vol 21 (9) ◽  
pp. 12 ◽  
Author(s):  
J. Fitzpatrick

The production of viable sperm is essential for male reproductive success. However, because females in many species mate with several males during a single reproductive episode, leading to sperm competition, a male's reproductive success also depends critically on the ability of his sperm to compete efficiently with those from rival males for fertilizations. Therefore, males who regularly encounter sperm competition are expected to produce high quality ejaculates. Here, I will provide an overview of how sperm morphology and performance are influenced by sperm competition, both within and between species, using recent empirical examples. Having established the importance of producing high quality ejaculates in males experiencing sperm competition, I will then examine the reproductive consequences of producing sub-optimal sperm. Given the well known role that inbreeding plays in reducing genetic quality and reproductive success, I will focus in particular on how inbreeding acts to reduce sperm quality. Finally, I will examine the consequences of inbreeding for male reproductive success in species where sperm competition is rampant. Together, these results highlight the evolutionary importance of sperm competition and inbreeding in shaping ejaculate traits.


1997 ◽  
Vol 200 (22) ◽  
pp. 2833-2840
Author(s):  
W Zheng ◽  
C Strobeck ◽  
N Stacey

Previous studies in goldfish (Carassius auratus) showed that the oocyte maturation-inducing steroid 4-pregnen-17,20ss-diol-3-one (17,20ssP) functions after release as a pheromone that increases male serum gonadotropin II (GtH II) concentration, milt (sperm and seminal fluid) volume and sexual activity, effects hypothesized to increase male reproductive success in the sperm competition of multi-male spawnings. The present study tested this hypothesis by determining whether overnight exposure to 17,20ssP increases fertility. In pair spawnings, 17,20ssP-exposed males fertilized a greater percentage of eggs than did control males, apparently because 17,20ssP-exposed males had more releasable sperm at the onset of spawning. Microsatellite DNA paternity analysis showed that 17,20ssP-exposed males also fertilized more eggs in competitive spawnings involving one control male and one 17,20ssP-exposed male. This effect of 17,20ssP on competitive fertility could be due to demonstrated increases in spawning activity, milt volume, duration of sperm motility and proportion of motile sperm. However, it appears that a change in sperm quality is a major component of the pheromonal effect because, in competitive in vitro fertilizations, sperm from 17,20ssP-exposed males fertilized more eggs than did sperm from control males. The results indicate that the response to pheromonal 17,20ssP is a major determinant of reproductive success in male goldfish.


2015 ◽  
Vol 282 (1817) ◽  
pp. 20151279 ◽  
Author(s):  
Marion Mehlis ◽  
Ingolf P. Rick ◽  
Theo C. M. Bakker

In polyandrous mating systems, male reproductive success depends on both mate-acquisition traits (precopulatory) and sperm competitive abilities (postcopulatory). Empirical data on the interaction between these traits are inconsistent; revealing positive, negative or no relationships. It is generally expected that the investment in pre- and postcopulatory traits is mediated by environmental conditions. To test how dietary resource availability affects sexual ornamentation, sperm quality and their interrelationship in three-spined sticklebacks ( Gasterosteus aculeatus ), full-sibling groups were raised under three conditions differing in food quantity and/or quality (i.e. carotenoid content): (i) high-quantity/high-quality, (ii) high-quantity/low-quality or (iii) low-quantity/low-quality. After 1 year of feeding, food-restricted males developed a more intense breeding coloration and faster sperm compared with their well-fed brothers, indicating that they allocated relatively more in pre- and postcopulatory traits. Moreover, they outcompeted their well-fed, carotenoid-supplemented brothers in sperm competition trials with equal numbers of competing sperm, suggesting that food-restricted males maximize their present reproductive success. This may result in reduced future reproductive opportunities as food-restricted males suffered from a higher mortality, had an overall reduced body size, and sperm number available for fertilization. In accordance with theory, a trade-off between the investment in pre- and postcopulatory traits was observed in food-restricted males, whereas well-fed males were able to allocate to both traits resulting in a significantly positive relationship.


Sign in / Sign up

Export Citation Format

Share Document