scholarly journals Potential for codends with shortened lastridge ropes to replace mandated selection devices in demersal trawl fisheries

Author(s):  
Manu Sistiaga ◽  
Jesse Brinkhof ◽  
Bent Herrmann ◽  
Roger B. Larsen ◽  
Eduardo Grimaldo ◽  
...  

In many trawl fisheries, codend size selectivity is supplemented by adding selection devices to the gear. In the Barents Sea gadoid fishery, combining diamond mesh codends with sorting grids is compulsory. However, the use of grids increases the costs and complexity of the gear, causing discontent among fishermen and prompting researchers to seek alternative solutions. Lastridge ropes are ropes attached to the selvedges of the codend. In this study, we tested the effect of shortening the lastridge ropes of two diamond mesh codends with different mesh sizes on the size selectivity of cod (Gadus morhua), haddock (Melanogramus aeglefinnus), and redfish (Sebastes spp.). Shortening the lastridge ropes by 15% increased the mesh opening during the fishing process, which significantly improved the size-selective properties of the codends. Further, the L50 values were always higher for the codends in the short lastridge configuration. Therefore, codends with shortened lastridge ropes may be a simpler alternative to sorting grids in this fishery, and they may be applicable to many other fisheries in which additional selection devices are used.

Author(s):  
Nadine Jacques ◽  
Hermann Pettersen ◽  
Kristine Cerbule ◽  
Bent Herrmann ◽  
Ólafur A. Ingólfsson ◽  
...  

In most trawl fisheries, drag forces tend to close the meshes in large areas of diamond mesh codends, negatively affecting their selective potential. In the Barents Sea deep-water shrimp (Pandalus borealis) trawl fishery, selectivity is based on a sorting grid followed by a diamond mesh codend. However, the retention of juvenile fish as well as undersized shrimp is still a problem. In this study, we estimated the effect of applying different codend modifications, each aimed at affecting codend mesh openness and thereby selectivity. Changing from a 4-panel to a 2-panel construction of the codend did not affect size selectivity. Shortening the lastridge ropes of a 4-panel codend by 20% resulted in minor reductions for juvenile fish bycatch, but a 45% reduction of undersized shrimp was observed. Target-size catches of shrimp were nearly unaffected. When the codend mesh circumference was reduced while simultaneously shortening the lastridge ropes, the effect on catch efficiency for shrimp or juvenile fish bycatch was marginal compared to a 4-panel codend design with shortened lastridge ropes.


2019 ◽  
Vol 76 (11) ◽  
pp. 2110-2120 ◽  
Author(s):  
Jesse Brinkhof ◽  
Bent Herrmann ◽  
Roger B. Larsen ◽  
Tiago Veiga-Malta

A new cod-end concept developed and tested exhibited significantly improved quality of caught cod (Gadus morhua) compared with that of the conventional cod end used in the Barents Sea bottom trawl fishery. However, the design of the new quality-improving cod end raised concerns about its size selectivity and the possibility that higher retention probability could negatively impact the catch pattern by increasing the proportion of undersized cod. Therefore, the goal of this study was to quantify and compare the size selectivity and catch pattern for cod when deploying, respectively, the conventional and new quality-improving cod end in the Barents Sea bottom trawl fishery. The new quality-improving cod end had significantly lower relative size selectivity than the conventional cod end, but no significant difference in the catch patterns was detected in the trawl. Further, estimation of the total size selectivity in the trawl revealed that the increased retention of small cod when using the quality-improving cod end was minor. Hence, despite the reduced selectivity, the quality-improving cod end can be used with low risk of retaining small cod.


2011 ◽  
Vol 68 (5) ◽  
pp. 927 ◽  
Author(s):  
Manu Sistiaga ◽  
Bent Herrmann ◽  
Kåre N. Nielsen ◽  
Roger B. Larsen

This investigation demonstrates how a multidisciplinary approach based on the FISHSELECT framework, sea trial data, underwater recordings, and laboratory investigations of netting can be applied to size selectivity studies and related management issues. We studied the morphological characteristics of Atlantic cod ( Gadus morhua ) and haddock ( Melanogrammus aeglefinus ) in the Barents Sea bottom trawl fishery. The differences between the L50 values (i.e., the size at which a fish has a 50% chance of being retained) that were recorded for the two species during sea trials can to a large extent be explained by the morphological differences between them. Because of these morphological differences, L50 is always larger for cod than for haddock with the grid and codend setup commonly used in the area. While catch separation of cod and haddock is a management objective in the Barents Sea, we demonstrate that the morphological differences between the species and the grid and codend setup in force today limit achievable differences in L50 to 5.5 cm. Furthermore, we show that for this fishery, the scope for increasing L50 differences between these species by changing the mesh shape configuration of the codend is minimal.


2002 ◽  
Vol 59 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Geir Ottersen ◽  
Kristin Helle ◽  
Bjarte Bogstad

For the large Arcto-Norwegian stock of cod (Gadus morhua L.) in the Barents Sea, year-to-year variability in growth is well documented. Here three hypotheses for the observed inverse relation between abundance and the mean length-at-age of juveniles (ages 1–4) are suggested and evaluated. Based on comprehensive data, we conclude that year-to-year differences in length-at-age are mainly determined by density-independent mechanisms during the pelagic first half year of the fishes' life. Enhanced inflow from the southwest leads to an abundant cohort at the 0-group stage being distributed farther east into colder water masses, causing lower postsettlement growth rates. We can not reject density-dependent growth effects related to variability in food rations, but our data do not suggest this to be the main mechanism. Another hypothesis suggests that lower growth rates during periods of high abundance are a result of density-dependent mechanisms causing the geographic range of juveniles to extend eastwards into colder water masses. This is rejected mainly because year-to-year differences in mean length are established by age 2, which is too early for movements over large distances.


2009 ◽  
Vol 5 (2) ◽  
pp. 204-206 ◽  
Author(s):  
Peter J Corkeron

Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua , herring, Clupea harengus , capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata . Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish–fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.


1981 ◽  
Vol 4 (6) ◽  
pp. 527-532 ◽  
Author(s):  
E. C. EGIDIUS ◽  
J. V. JOHANNESSEN ◽  
E. LANGE

1996 ◽  
Vol 42 (1-4) ◽  
pp. 119-123 ◽  
Author(s):  
Gunilla Ericson ◽  
Gun Åkerman ◽  
Birgitta Liewenborg ◽  
Lennart Balk

2016 ◽  
Vol 73 (12) ◽  
pp. 1742-1749 ◽  
Author(s):  
Øystein Langangen ◽  
Geir Ottersen ◽  
Lorenzo Ciannelli ◽  
Frode B. Vikebø ◽  
Leif Christian Stige

We investigate how the reproductive strategy in a migratory marine fish may be influenced by spatial variations in mortality in early life stages. In particular, we examine how spawning time and location affect offspring survival and growth. A drift model for early life stages (eggs to age 1) of the Barents Sea cod (Gadus morhua) is combined with empirical estimates of spatial variation in mortality at two different life stages. We examine seasonal and interannual differences in survival and growth in offspring originating from two spawning grounds, with the central site requiring higher migration distance, and hence cost, than the northern site. When accounting for spatially explicit mortality fields, central and northern spawned offspring have about equal survival, as do early and late spawned offspring. Furthermore, central spawned offspring grow faster and are likely to reach a larger size compared with northern spawned offspring. Our results indicate that the fitness benefit of southward migration in the Barents Sea cod is not mainly due to higher early survival of offspring, but rather due to effects of offspring acquiring a larger size.


Sign in / Sign up

Export Citation Format

Share Document