Monitoring the water balance of seepage lakes to track regional responses to an evolving climate

Author(s):  
Carl J Watras ◽  
James R Michler ◽  
Jeff Rubsam

Understanding the causes of large fluctuations in lake water levels is important for adaptive resource management. The relatively simple water budgets of small seepage lakes make them potentially useful model systems, provided that key water balance components can be well constrained. Here, spatial variability in measured rates of evaporation (E) and precipitation (P) at the whole lake scale was investigated, and the effect on daily and seasonal water balance estimates was quantified. To estimate spatial variability, triplicate sensor platforms were deployed on and near an 18 ha seepage lake. Lake stage (S) was monitored at a single node in the lake. The water balance was closed by estimating net groundwater seepage (Gnet) analytically as Gnet = ∆S – (P – E). Instrumentation on a second seepage lake was maintained by citizen scientists to assess the potential for more widespread sensor deployments. Data were collected every 30-minutes for six months. The results indicate that low-cost sensor networks with single nodes to measure E, P and ∆S provide well-constrained water budgets at daily and seasonal time scales.

2015 ◽  
Vol 12 (4) ◽  
pp. 4271-4314 ◽  
Author(s):  
S. Biskop ◽  
F. Maussion ◽  
P. Krause ◽  
M. Fink

Abstract. Lake-level fluctuations in closed basins on the Tibetan Plateau (TP) indicate climate-induced changes in the regional water balance. However, little is known about the region's key hydrological parameters, hampering the interpretation of these changes. The purpose of this study is to contribute to a more quantitative understanding of these controls. Four lakes in the south-central part of the TP were selected to analyze the spatiotemporal variations of water-balance components: Nam Co and Tangra Yumco (indicating increasing water levels), and Mapam Yumco and Paiku Co (indicating stable or slightly decreasing water levels). We present the results of an integrated approach combining hydrological modeling, atmospheric-model output and remote-sensing data. The hydrological model J2000g was adapted and extended according to the specific characteristics of closed lake basins on the TP and driven with "High Asia Refined analysis (HAR)" data at 10 km resolution for the period 2001–2010. Our results reveal that because of the small portion of glacier areas (1 to 7% of the total basin area) the contribution of glacier melt water accounts for only 14–30% of total runoff during the study period. Precipitation is found to be the principal factor controlling the water-balance in the four studied basins. The positive water balance in the Nam Co and Tangra Yumco basins was primarily related to larger precipitation amounts and thus higher runoff rates in comparison with the Paiku Co and Mapam Yumco basins. This study highlights the benefits of combining atmospheric and hydrological modeling. The presented approach can be readily transferred to other ungauged lake basins on the TP, opening new directions of research. Future work should go towards increasing the atmospheric model's spatial resolution and a better assessment of the model-chain uncertainties, especially in this region where observational data is missing.


2020 ◽  
Author(s):  
Tejas Kulkarni ◽  
Mathias Gassmann ◽  
Sanaz Vajedian

<p>The Arkavathy river was once a major water supply source to the city of Bangalore, India, till 1970s but has completely dried up post the 1990s. The study re-invigorates on the socio-hydro dynamics in the Upper Arkavathy Catchment (UAC), covering 1432 km<sup>2</sup>, through the combination of latest remote sensing products (namely Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS), Landsat derived NDVI). The parameters of remotely sensed long-term precipitation and temperature from corresponded well with in-situ data. Seasonal trend analysis helped re-instate no evidence of climatic driven drought to explain the decline of flows in the river. To investigate the anthropogenic proximate drivers of change - mainly groundwater exploitation and increase in water intensive cropping in the catchment - a spatio-temporal assimilation of GRACE TWS, GLDAS state variables and LandSAT-NDVI with in-situ well observations is incorporated into the water balance equation. While, studies have shown high correlation in quantifying groundwater storage changes (GWSC) and attempted downscaling with this GRACE-GLDAS-GWL-NDVI assimilation in natural catchments, this did not seem to be very skilful in human-altered fractured rock aquifers of south India for the following reasons. Firstly, the GRACE-TWS (RL-06) for the grid showed a meagre declining trend of -.033mm/year (2002-2018) and did not seem to capture the deeper groundwater extraction as compared to the social narrative in shift of hundreds of metres decline in static water levels. Secondly, the disaggregation through the GLDAS-NOAH soil moisture which corresponded well with rainfall patterns, assigns inclusion of only the shallow storage fluxes in the sub-surficial aquifer showing -5.3mm/year, which explains no overland flows in the river, but neglects the modelling of the GW aquifer and showed a faulty +47.4mm/year (2002-2018). Thirdly, the simple addition of groundwater observation well trends showed a decrease of -106.6mm/year in GWSC (2001-2017) as compared to the -656.6mm/year (1970-2000) of field scale models by Srinivasan et.al (2015). This is attributed to the fact that data used in such studies from the governmental groundwater authority boards are generally of shallower wells (up to 70m below surface) and cannot be representative of the on-ground reality of shift to deeper exploitation of GW (up to 350m) by privatised borewells. Finally, cloud-cover and scan line error corrected NDVI pixels showed an increase of irrigated area in the UAC by 31% (1972-2018). However, we observed long term data gaps (1998-2003) in images and higher uncertainties during the crucial cropping season due to monsoonal cloud cover (JJASO months) in the images to effectively understand the agricultural dynamics. Hence, it is concluded that this  procedure coupled with this period receiving higher rainfall with an average of1000mm/year (2001-2019) as compared to 800mm/year (1901-2000) makes it an unreliable method to disassociate the human interventions in modifying hydro-geologic fluxes or patterns accurately in the UAC.</p>


2019 ◽  
Author(s):  
Pierre-Antoine Versini ◽  
Filip Stanic ◽  
Auguste Gires ◽  
Daniel Scherzer ◽  
Ioulia Tchiguirinskaia

Abstract. The Blue Green Wave of Champs-sur-Marne (France) represents the largest green roof (1 ha) of the Greater Paris Area. The Hydrology, Meteorology and Complexity lab of Ecole des Ponts ParisTech has chosen to convert this architectural building as a full-scale monitoring site devoted to study the performances of green infrastructures in stormwater management. For this purpose, the relevant components of the water balance during a rainfall event have been monitored: rainfall, water content in the substrate and the discharge flowing out of the infrastructure. Data provided by adapted measurement sensors were collected during 78 days between February and May 2018. The related raw data and a python program transforming them into hydrological quantities and providing some first elements of analysis have been made available. These measurements are useful to better understand the processes (infiltration and retention) conducted their hydrological performances, and their spatial variability due to substrate heterogeneity. Link to the data set (Versini et al., 2019): https://doi.org/10.5281/zenodo.3467300 (doi:10.5281/zenodo.3467300).


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2018 ◽  
Author(s):  
Gonzalo Duró ◽  
Alessandra Crosato ◽  
Maarten G. Kleinhans ◽  
Wim S. J. Uijttewaal

Abstract. Diverse methods are currently available to measure river bank erosion at broad-ranging temporal and spatial scales. Yet, no technique provides low-cost and high-resolution to survey small-scale bank processes along a river reach. We investigate the capabilities of Structure-from-Motion photogrammetry applied with imagery from an Unmanned Aerial Vehicle (UAV) to describe the evolution of riverbank profiles in middle-size rivers. The bank erosion cycle is used as a reference to assess the applicability of different techniques. We surveyed 1.2 km of a restored bank of the Meuse River eight times within a year, combining different photograph perspectives and overlaps to identify an efficient UAV flight to monitor banks. The accuracy of the Digital Surface Models (DSMs) was evaluated compared with RTK GPS points and an Airborne Laser Scanning (ALS) of the whole reach. An oblique perspective with eight photo overlaps was sufficient to achieve the highest relative precision to observation distance of ~1:1400, with 10 cm error range. A complementary nadiral view increased coverage behind bank toe vegetation. The DSM and ALS had comparable accuracies except on banks, where the latter overestimates elevations. Sequential DSMs captured signatures of the erosion cycle such as mass failures, slump-block deposition, and bank undermining. Although this technique requires low water levels and banks without dense vegetation, it is a low-cost method to survey reach-scale riverbanks in sufficient resolution to quantify bank retreat and identify morphological features of the bank failure and erosion processes.


2006 ◽  
Vol 20 (5) ◽  
pp. 1137-1156 ◽  
Author(s):  
M. P. Tripathi ◽  
N. S. Raghuwanshi ◽  
G. P. Rao

Sign in / Sign up

Export Citation Format

Share Document