Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS)

2020 ◽  
Vol 50 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Martin Jacobs ◽  
Andreas Rais ◽  
Hans Pretzsch

Tree and stand volume estimates are relevant for forest inventories, forest sales, and carbon stock evaluations. Forest practice commonly uses generalized stem-wood volume functions; however, such generalized approaches neglect the stem form in detail. Hence, trees of a given species with the same diameter at breast height (d1.3) and height (h) are always assumed to have the same form factor and thus the same volume. This case study focused on stem form variation of Norway spruce (Picea abies (L.) Karst.) due to competition effects. Using terrestrial laser scanning (TLS), we measured the stem shape of 868 trees from a long-term spacing and thinning experiment in Germany. The plots covered a broad density range. We analysed the effect of competition and compared the TLS-determined stem volume estimates with those determined conventionally. TLS-based volume estimations showed that the lower the competition was, the lower the tree volume was with a given d1.3 and h. Commonly used functions underestimated the volume stock overall by 4.2%, disregarding any levels. At plot level, underestimation varied from 0.7% to 7.0%. At tree level, the volume was under- and over-estimated by −10% to +10%, respectively. The more precise the examination was, the more suitable the application of TLS was for enhancing volume estimation.

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2020 ◽  
Vol 66 (6) ◽  
pp. 737-746
Author(s):  
Francesco Chianucci ◽  
Nicola Puletti ◽  
Mirko Grotti ◽  
Carlotta Ferrara ◽  
Achille Giorcelli ◽  
...  

Abstract Accurate and frequently updated tree volume estimates are required for poplar plantations, which are characterized by fast growth rate and short rotation. In this study, we tested the potential of terrestrial laser scanning (TLS) as a reliable method for developing nondestructive tree volume allometries in poplar plantations. The trial was conducted in Italy, where 4- to 10-year-old hybrid plantations were sampled to develop tree crown volume allometry in leaf-on conditions, tree stem volume, and height-diameter allometries in leaf-off conditions. We tested one-entry models based on diameter and two-entry models based on both diameter and height. Model performance was assessed by residual analysis. Results indicate that TLS can provide accurate models of tree stem and crown volume, with percentage of root-mean-square error of about 20 percent and 15 percent, respectively. The inclusion of height does not bring relevant improvement in the models, so that only diameter can be used to predict tree stem and crown volume. The TLS-measured stem volume estimates agreed with an available formula derived from harvesting. We concluded that TLS is a reliable method for developing nondestructive volume allometries in poplar plantations and holds great potential to enhance conventional tree inventory and monitoring. Study Implications: Terrestrial laser scanning (TLS) is a technique that allows nondestructive measurement of the three-dimensional structure of a tree with high precision and low cost. The ability of TLS to measure both tree crown volume and tree position can be effective to test optimal spacing requirements and also to test innovative schemes such as mixed or polycyclic poplar plantations. The spatially explicit nature of TLS measurements allows better integration with different remotely sensed sensors, which can be used in combination with TLS, enabling a multiscale assessment of poplar plantation structure with different levels of detail, enhancing conventional tree inventory and supporting effective management strategies.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 717
Author(s):  
Dimitrios Panagiotidis ◽  
Azadeh Abdollahnejad

Accurate collection of dendrometric information is essential for improving decision confidence and supporting potential advances in forest management planning (FMP). Total stem volume is an important forest inventory parameter that requires high accuracy. Terrestrial laser scanning (TLS) has emerged as one of the most promising tools for automatically measuring total stem height and diameter at breast height (DBH) with very high detail. This study compares the accuracy of different methods for extracting the total stem height and DBH to estimate total stem volume from TLS data. Our results show that estimates of stem volume using the random sample consensus (RANSAC) and convex hull and HTSP methods are more accurate (bias = 0.004 for RANSAC and bias = 0.009 for convex hull and HTSP) than those using the circle fitting method (bias = 0.046). Furthermore, the RANSAC method had the best performance with the lowest bias and the highest percentage of accuracy (78.89%). The results of this study provide insight into the performance and accuracy of the tested methods for tree-level stem volume estimation, and allow for the further development of improved methods for point-cloud-based data collection with the goal of supporting potential advances in precision forestry.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1050 ◽  
Author(s):  
Fernando J. Aguilar ◽  
Abderrahim Nemmaoui ◽  
Alberto Peñalver ◽  
José R. Rivas ◽  
Manuel A. Aguilar

Traditional studies aimed at developing allometric models to estimate dry above-ground biomass (AGB) and other tree-level variables, such as tree stem commercial volume (TSCV) or tree stem volume (TSV), usually involves cutting down the trees. Although this method has low uncertainty, it is quite costly and inefficient since it requires a very time-consuming field work. In order to assist in data collection and processing, remote sensing is allowing the application of non-destructive sampling methods such as that based on terrestrial laser scanning (TLS). In this work, TLS-derived point clouds were used to digitally reconstruct the tree stem of a set of teak trees (Tectona grandis Linn. F.) from 58 circular reference plots of 18 m radius belonging to three different plantations located in the Coastal Region of Ecuador. After manually selecting the appropriate trees from the entire sample, semi-automatic data processing was performed to provide measurements of TSCV and TSV, together with estimates of AGB values at tree level. These observed values were used to develop allometric models, based on diameter at breast height (DBH), total tree height (h), or the metric DBH2 × h, by applying a robust regression method to remove likely outliers. Results showed that the developed allometric models performed reasonably well, especially those based on the metric DBH2 × h, providing low bias estimates and relative RMSE values of 21.60% and 16.41% for TSCV and TSV, respectively. Allometric models only based on tree height were derived from replacing DBH by h in the expression DBH2 x h, according to adjusted expressions depending on DBH classes (ranges of DBH). This finding can facilitate the obtaining of variables such as AGB (carbon stock) and commercial volume of wood over teak plantations in the Coastal Region of Ecuador from only knowing the tree height, constituting a promising method to address large-scale teak plantations monitoring from the canopy height models derived from digital aerial stereophotogrammetry.


2018 ◽  
Vol 9 ◽  
Author(s):  
Samuli Junttila ◽  
Junko Sugano ◽  
Mikko Vastaranta ◽  
Riikka Linnakoski ◽  
Harri Kaartinen ◽  
...  

2019 ◽  
Vol 49 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Tomi Karjalainen ◽  
Lauri Korhonen ◽  
Petteri Packalen ◽  
Matti Maltamo

In this paper, we examine the transferability of airborne laser scanning (ALS) based models for individual-tree detection (ITD) from one ALS inventory area (A1) to two other areas (A2 and A3). All areas were located in eastern Finland less than 100 km from each other and were scanned using different ALS devices and parameters. The tree attributes of interest were diameter at breast height (Dbh), height (H), crown base height (Cbh), stem volume (V), and theoretical sawlog volume (Vlog) of Scots pine (Pinus sylvestris L.) with Dbh ≥ 16 cm. All trees were first segmented from the canopy height models, and various ALS metrics were derived for each segment. Then only the segments covering correctly detected pines were chosen for further inspection. The tree attributes were predicted using the k-nearest neighbor (k-NN) imputation. The results showed that the relative root mean square error (RMSE%) values increased for each attribute after the transfers. The RMSE% values were, for A1, A2, and A3, respectively: Dbh, 13.5%, 14.8%, and 18.1%; H, 3.2%, 5.9%, and 6.2%; Cbh, 13.3%, 15.3%, and 18.3%; V, 29.3%, 35.4%, and 39.1%; and Vlog, 38.2%, 54.4% and 51.8%. The observed values indicate that it may be possible to employ ALS-based tree-level k-NN models over different inventory areas without excessive reduction in accuracy, assuming that the tree species are known to be similar.


2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


1991 ◽  
Vol 21 (2) ◽  
pp. 193-198 ◽  
Author(s):  
R. R. Forslund

Formulae are presented for calculating the volume, surface area, centre of gravity, centre of mass, form, taper, and instantaneous slope of the power function. A profile plotting technique is also used that allows visual comparisons between average stem profiles independent of the size and taper of individual stems. The technique is used to demonstrate that the position near 30% of the height from the base of the stem is a position of form stability for volume estimation. Using the paracone profile model (a power function midway between a paraboloid and a cone) with the diameter at the 30% position and the total stem height, individual stem volume estimates within 10% of the true volume (95% confidence) are obtained once again using a sample of 50 yearling aspen (Populustremuloides Michx.). The plotting technique is then applied to the aspen sample, and the average profiles support the hypothesis that juvenile stems may begin life as paraboloids. The average centre of gravity, the average centre of mass, the sectional form, the average form, and the taper of the stems are also examined and are shown to be quantitative indicators of the plotted profile characteristics.


Sign in / Sign up

Export Citation Format

Share Document