Recovery of novel alkaline phosphatase-encoding genes (phoX) from eutrophic Lake Taihu

2014 ◽  
Vol 60 (3) ◽  
pp. 167-171 ◽  
Author(s):  
Jiangyu Dai ◽  
Dan Chen ◽  
Guang Gao ◽  
Xiangming Tang ◽  
Shiqiang Wu ◽  
...  

To expand current knowledge on the molecular aspects of alkaline phosphatase PhoX in shallow eutrophic freshwaters, we investigated the genetic diversity and abundance of the PhoX-encoding gene (phoX) in 4 ecological regions in Lake Taihu, China, following a gradient in total phosphorus concentrations ranging from hypereutrophic to mesotrophic. Bacterial phoX was heterogeneously distributed with the highest diversity in the eutrophic regions and the highest abundance in the mesotrophic Xukou Bay. The concentrations of total phosphorus and enzymatically hydrolyzable phosphorus determined the distribution of bacterial phoX in Lake Taihu. Most (70.8%) of the phoX-translated proteins had <90% similarity to the PhoX proteins in the GenBank database, suggesting the presence of novel phoX genotypes in Lake Taihu. The low overlap in phoX genotypes (15.8%) between Lake Taihu and some marine ecosystems, and the dominance of the translated proteins most similar to the Alphaproteobacteria-affiliated PhoX, demonstrate the uniqueness of PhoX in eutrophic freshwaters.

2018 ◽  
Vol 35 (6) ◽  
pp. 528-536 ◽  
Author(s):  
Jiangyu Dai ◽  
Guang Gao ◽  
Shiqiang Wu ◽  
Xiufeng Wu ◽  
Xiangming Tang ◽  
...  

2015 ◽  
Vol 61 (3) ◽  
pp. 227-236 ◽  
Author(s):  
Jiangyu Dai ◽  
Dan Chen ◽  
Shiqiang Wu ◽  
Xiufeng Wu ◽  
Jie Zhou ◽  
...  

Limnetic habitats that are dominated by either algae or macrophytes represent the 2 dominant ecosystems in shallow lakes. We assessed seasonal variations in the diversity and abundance of alkaline phosphate-encoding genes (phoX) in these 2 zones of Lake Taihu, which is a large, shallow, eutrophic lake in China. There was no significant difference in seasonal mean phoX diversity between the 2 zones, whereas the seasonal mean phoX abundance in the macrophyte-dominated region was higher than that in the algae-dominated region. The bulk of the genotypes in the 2 regions were most similar to the alphaproteobacterial and betaproteobacterial phoX. Genotypes most similar to phoX affiliated with Betaproteobacteria were present with greater diversity in the macrophyte-dominated zone than in the algae-dominated zone. In the algae-dominated zone, the relative proportion of genotypes most similar to cyanobacterial phoX was highest (38.8%) in summer. In addition to the different genotype structures and environmental factors between the 2 stable states, the lower gene abundances and higher alkaline phosphatase activities in Meiliang Bay in summer than those in Xukou Bay reveals different organophosphate-mineralizing modes in these 2 contrasting habitats.


2020 ◽  
Vol 728 ◽  
pp. 138615
Author(s):  
Tingxi Zhang ◽  
Mengyao Qin ◽  
Chao Wei ◽  
Defang Li ◽  
Xiaoran Lu ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 130234
Author(s):  
Xianfang Fan ◽  
Shiming Ding ◽  
Shuaishuai Gao ◽  
Musong Chen ◽  
Zheng Fu ◽  
...  

2019 ◽  
Vol 47 (5) ◽  
pp. 1429-1436 ◽  
Author(s):  
Rawaa A. Z. Al-Faresi ◽  
Robert. N. Lightowlers ◽  
Zofia M. A. Chrzanowska-Lightowlers

Abstract Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These organelles are described as arising from a common ancestor but a comparison of numerous aspects of mitochondria between different organisms provides remarkable examples of divergent evolution. In humans, these organelles are of dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that are encoded by the mitochondrial genome. Of the various functions that these organelles perform, it is only oxidative phosphorylation, which provides ATP as a source of chemical energy, that is dependent on synthesis of these thirteen mitochondrially encoded proteins. A prerequisite for this process of translation are the mitoribosomes. The recent revolution in cryo-electron microscopy has generated high-resolution mitoribosome structures and has undoubtedly revealed some of the most distinctive molecular aspects of the mitoribosomes from different organisms. However, we still lack a complete understanding of the mechanistic aspects of this process and many of the factors involved in post-transcriptional gene expression in mitochondria. This review reflects on the current knowledge and illustrates some of the striking differences that have been identified between mitochondria from a range of organisms.


2009 ◽  
Vol 55 (1) ◽  
pp. 420-432 ◽  
Author(s):  
Hai Xu ◽  
Hans W. Paerl ◽  
Boqiang Qin ◽  
Guangwei Zhu ◽  
Guang Gaoa

2007 ◽  
Vol 7 ◽  
pp. 1470-1492 ◽  
Author(s):  
Aartjan J. W. te Velthuis ◽  
Christoph P. Bagowski

PDZ/LIM genes encode a group of proteins that play very important, but diverse, biological roles. They have been implicated in numerous vital processes, e.g., cytoskeleton organization, neuronal signaling, cell lineage specification, organ development, and oncogenesis.In mammals, there are ten genes that encode for both a PDZ domain, and one or several LIM domains: four genes of the ALP subfamily (ALP, Elfin, Mystique, and RIL), three of the Enigma subfamily (Enigma, Enigma Homolog, and ZASP), the two LIM kinases (LIMK1 and LIMK2), and the LIM only protein 7 (LMO7). Functionally, all PDZ and LIM domain proteins share an important trait, i.e., they can associate with and/or influence the actin cytoskeleton.We review here the PDZ and LIM domain—encoding genes and their different gene structures, their binding partners, and their role in development and disease. Emphasis is laid on the important questions: why the combination of a PDZ domain with one or more LIM domains is found in such a diverse group of proteins, and what role the PDZ/LIM module could have in signaling complex assembly and localization.Furthermore, the current knowledge on splice form specific expression and the function of these alternative transcripts during vertebrate development will be discussed, since another source of complexity for the PDZ and LIM domain—encoding proteins is introduced by alternative splicing, which often creates different domain combinations.


Sign in / Sign up

Export Citation Format

Share Document