Comparing Alkaline Phosphatase PhoX-Encoding Genes in Two Contrasting Habitats of the Large Eutrophic Lake Taihu, China

2018 ◽  
Vol 35 (6) ◽  
pp. 528-536 ◽  
Author(s):  
Jiangyu Dai ◽  
Guang Gao ◽  
Shiqiang Wu ◽  
Xiufeng Wu ◽  
Xiangming Tang ◽  
...  
2015 ◽  
Vol 61 (3) ◽  
pp. 227-236 ◽  
Author(s):  
Jiangyu Dai ◽  
Dan Chen ◽  
Shiqiang Wu ◽  
Xiufeng Wu ◽  
Jie Zhou ◽  
...  

Limnetic habitats that are dominated by either algae or macrophytes represent the 2 dominant ecosystems in shallow lakes. We assessed seasonal variations in the diversity and abundance of alkaline phosphate-encoding genes (phoX) in these 2 zones of Lake Taihu, which is a large, shallow, eutrophic lake in China. There was no significant difference in seasonal mean phoX diversity between the 2 zones, whereas the seasonal mean phoX abundance in the macrophyte-dominated region was higher than that in the algae-dominated region. The bulk of the genotypes in the 2 regions were most similar to the alphaproteobacterial and betaproteobacterial phoX. Genotypes most similar to phoX affiliated with Betaproteobacteria were present with greater diversity in the macrophyte-dominated zone than in the algae-dominated zone. In the algae-dominated zone, the relative proportion of genotypes most similar to cyanobacterial phoX was highest (38.8%) in summer. In addition to the different genotype structures and environmental factors between the 2 stable states, the lower gene abundances and higher alkaline phosphatase activities in Meiliang Bay in summer than those in Xukou Bay reveals different organophosphate-mineralizing modes in these 2 contrasting habitats.


2014 ◽  
Vol 60 (3) ◽  
pp. 167-171 ◽  
Author(s):  
Jiangyu Dai ◽  
Dan Chen ◽  
Guang Gao ◽  
Xiangming Tang ◽  
Shiqiang Wu ◽  
...  

To expand current knowledge on the molecular aspects of alkaline phosphatase PhoX in shallow eutrophic freshwaters, we investigated the genetic diversity and abundance of the PhoX-encoding gene (phoX) in 4 ecological regions in Lake Taihu, China, following a gradient in total phosphorus concentrations ranging from hypereutrophic to mesotrophic. Bacterial phoX was heterogeneously distributed with the highest diversity in the eutrophic regions and the highest abundance in the mesotrophic Xukou Bay. The concentrations of total phosphorus and enzymatically hydrolyzable phosphorus determined the distribution of bacterial phoX in Lake Taihu. Most (70.8%) of the phoX-translated proteins had <90% similarity to the PhoX proteins in the GenBank database, suggesting the presence of novel phoX genotypes in Lake Taihu. The low overlap in phoX genotypes (15.8%) between Lake Taihu and some marine ecosystems, and the dominance of the translated proteins most similar to the Alphaproteobacteria-affiliated PhoX, demonstrate the uniqueness of PhoX in eutrophic freshwaters.


2020 ◽  
Vol 728 ◽  
pp. 138615
Author(s):  
Tingxi Zhang ◽  
Mengyao Qin ◽  
Chao Wei ◽  
Defang Li ◽  
Xiaoran Lu ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 130234
Author(s):  
Xianfang Fan ◽  
Shiming Ding ◽  
Shuaishuai Gao ◽  
Musong Chen ◽  
Zheng Fu ◽  
...  

2009 ◽  
Vol 55 (1) ◽  
pp. 420-432 ◽  
Author(s):  
Hai Xu ◽  
Hans W. Paerl ◽  
Boqiang Qin ◽  
Guangwei Zhu ◽  
Guang Gaoa

mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Shaomei He ◽  
Sarah L. R. Stevens ◽  
Leong-Keat Chan ◽  
Stefan Bertilsson ◽  
Tijana Glavina del Rio ◽  
...  

ABSTRACT Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called “Planctomycete-specific” cytochrome c-encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling. Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, and yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions and greatly expand knowledge of the genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide degraders in freshwater, uncovered interesting genomic features for this lifestyle, and suggested their adaptation to nutrient availabilities in their environments. Verrucomicrobia populations differ significantly between the two lakes in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially derived allochthonous carbon sources of the two ecosystems, respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humus-rich environment. Notably, most epilimnion genomes have large numbers of so-called “Planctomycete-specific” cytochrome c-encoding genes, which exhibited distribution patterns nearly opposite to those seen with glycoside hydrolase genes, probably associated with the different levels of environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes represent a major step toward understanding the role, ecophysiology, and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called “Planctomycete-specific” cytochrome c-encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.


Hydrobiologia ◽  
2018 ◽  
Vol 829 (1) ◽  
pp. 167-187 ◽  
Author(s):  
Yanqing Ding ◽  
Hai Xu ◽  
Jianming Deng ◽  
Boqiang Qin ◽  
Youwen He

Sign in / Sign up

Export Citation Format

Share Document