scholarly journals COVID-19 Basics and Vaccine Development with a Canadian Perspective

Author(s):  
Marina Liu ◽  
Xiongbiao Chen

The ongoing coronavirus disease 2019 (COVID-19) pandemic is a rapidly evolving situation. New discoveries about COVID-19 and its causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continue to deepen the understanding of this novel disease. As there is currently no COVID-19 specific treatment, isolation is the most effective method to prevent transmission. Moreover, development of a safe and effective COVID-19 vaccine will be instrumental in reinstating pre-COVID-19 conditions. As of July 31, 2020, there are at least 139 vaccine candidates from around the globe are in preclinical evaluation, with another 26 undergoing clinical evaluation. This paper aims to review the basics of COVID-19, including epidemiology, basic biology of SARS-CoV-2, and transmission. We also review COVID-19 vaccine development, including animal models, platforms under development, and vaccine development in Canada.

2016 ◽  
Vol 23 (9) ◽  
pp. 746-756 ◽  
Author(s):  
Ellen E. Higginson ◽  
Raphael Simon ◽  
Sharon M. Tennant

ABSTRACTSalmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines forSalmonella entericaserovar Typhi, these vaccines are generally ineffective against otherSalmonellaserovars. Vaccines that target paratyphoid and nontyphoidalSalmonellaserovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for variousSalmonellaserovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models forSalmonellainfection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.


2005 ◽  
Vol 69 (4) ◽  
pp. 635-664 ◽  
Author(s):  
Susan R. Weiss ◽  
Sonia Navas-Martin

SUMMARY Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.


2021 ◽  
Vol 1 (1) ◽  
pp. 65-76
Author(s):  
Keshav S. Moharir ◽  
Sumit K. Arora ◽  
Subhash R. Yende ◽  
Govind K. Lohiya ◽  
Sapan K. Shah

Coronavirus Infectious Disease (COVID-19) has taken heavy toll on human lives and world economy across the globe. Till date, there is no specific treatment and pathological effects in COVID-19 are continuously evolving. The governments and authorities have announced various measures for personal care with use of face masks, physical distancing and prohibition of mass gatherings. These measures have certainly helped to contain the disease but with substantial economic slowdown. Thus mass immunization by vaccination is the top priority. With knowledge of MERS-SARS (Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome) in hand, researchers are rushing to vaccine development against SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) with newer technological platforms. However, the challenge lies in proving safety, quality and efficacy of vaccine with its resilience to manufacture it in large scales within stipulated time frame. The time consuming nature of classical phased clinical trials are substituted by human volunteer challenge with vaccination of humans engaging undertrial vaccine. This review discusses about various technology platforms being used and tried, their types and challenges in development of vaccine for SARS-CoV-2. Briefly, Indian perspective is also discussed in the race of vaccine development.


2020 ◽  
Vol 13 (8) ◽  
pp. dmm045716
Author(s):  
Anni K. Saralahti ◽  
Meri I. E. Uusi-Mäkelä ◽  
Mirja T. Niskanen ◽  
Mika Rämet

ABSTRACTTuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 627
Author(s):  
Tomoki Yoshikawa

Severe fever with thrombocytopenia syndrome (SFTS), which is caused by SFTS virus (SFTSV), is a tick-borne emerging zoonosis with a high case-fatality rate. At present, there is no approved SFTS vaccine, although the development of a vaccine would be one of the best strategies for preventing SFTS. This article focused on studies aimed at establishing small animal models of SFTS that are indispensable for evaluating vaccine candidates, developing these vaccine candidates, and establishing more practical animal models for evaluation. Innate immune-deficient mouse models, a hamster model, an immunocompetent ferret model and a cat model have been developed for SFTS. Several vaccine candidates for SFTS have been developed, and their efficacy has been confirmed using these animal models. The candidates consist of live-attenuated virus-based, viral vector-based, or DNA-based vaccines. SFTS vaccines are expected to be used for humans and companion dogs and cats. Hence for practical use, the vaccine candidates should be evaluated for efficacy using not only nonhuman primates but also dogs and cats. There is no practical nonhuman primate model of SFTS; however, the cat model is available to evaluate the efficacy of these candidate SFTS vaccines on domesticated animals.


2020 ◽  
Vol 13 (9) ◽  
pp. dmm045740
Author(s):  
Laylaa Ramos ◽  
Joan K. Lunney ◽  
Mercedes Gonzalez-Juarrero

ABSTRACTNeonatal and infant immunity differs from that of adults in both the innate and adaptive arms, which are critical contributors to immune-mediated clearance of infection and memory responses elicited during vaccination. The tuberculosis (TB) research community has openly admitted to a vacuum of knowledge about neonatal and infant immune responses to Mycobacterium tuberculosis (Mtb) infection, especially in the functional and phenotypic attributes of memory T cell responses elicited by the only available vaccine for TB, the Bacillus Calmette–Guérin (BCG) vaccine. Although BCG vaccination has variable efficacy in preventing pulmonary TB during adolescence and adulthood, 80% of endemic TB countries still administer BCG at birth because it has a good safety profile and protects children from severe forms of TB. As such, new vaccines must work in conjunction with BCG at birth and, thus, it is essential to understand how BCG shapes the immune system during the first months of life. However, many aspects of the neonatal and infant immune response elicited by vaccination with BCG remain unknown, as only a handful of studies have followed BCG responses in infants. Furthermore, most animal models currently used to study TB vaccine candidates rely on adult-aged animals. This presents unique challenges when transitioning to human trials in neonates or infants. In this Review, we focus on vaccine development in the field of TB and compare the relative utility of animal models used thus far to study neonatal and infant immunity. We encourage the development of neonatal animal models for TB, especially the use of pigs.


2019 ◽  
Vol 33 (1) ◽  
Author(s):  
Suraj B. Sable ◽  
James E. Posey ◽  
Thomas J. Scriba

SUMMARY Tuberculosis (TB) is the leading killer among all infectious diseases worldwide despite extensive use of the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine. A safer and more effective vaccine than BCG is urgently required. More than a dozen TB vaccine candidates are under active evaluation in clinical trials aimed to prevent infection, disease, and recurrence. After decades of extensive research, renewed promise of an effective vaccine against this ancient airborne disease has recently emerged. In two innovative phase 2b vaccine clinical trials, one for the prevention of Mycobacterium tuberculosis infection in healthy adolescents and another for the prevention of TB disease in M. tuberculosis-infected adults, efficacy signals were observed. These breakthroughs, based on the greatly expanded knowledge of the M. tuberculosis infection spectrum, immunology of TB, and vaccine platforms, have reinvigorated the TB vaccine field. Here, we review our current understanding of natural immunity to TB, limitations in BCG immunity that are guiding vaccinologists to design novel TB vaccine candidates and concepts, and the desired attributes of a modern TB vaccine. We provide an overview of the progress of TB vaccine candidates in clinical evaluation, perspectives on the challenges faced by current vaccine concepts, and potential avenues to build on recent successes and accelerate the TB vaccine research-and-development trajectory.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1474
Author(s):  
Hoda Najjar ◽  
Hadeel T. Al-Jighefee ◽  
Abeer Qush ◽  
Muna Nizar Ahmed ◽  
Sara Awwad ◽  
...  

As of March 2020, the time when the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic, our existence has been threatened and the lives of millions have been claimed. With this ongoing global issue, vaccines are considered of paramount importance in curtailing the outbreak and probably a prime gamble to bring us back to ‘ordinary life’. To date, more than 200 vaccine candidates have been produced, many of which were approved by the Food and Drug Administration (FDA) for emergency use, with the research and discovery phase of their production process passed over. Capering such a chief practice in COVID-19 vaccine development, and manufacturing vaccines at an unprecedented speed brought many challenges into play and raised COVID-19 vaccine remonstrance. In this review, we highlight relevant challenges to global COVID-19 vaccine development, dissemination, and deployment, particularly at the level of large-scale production and distribution. We also delineate public perception on COVID-19 vaccination and outline the main facets affecting people’s willingness to get vaccinated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anusha Uttarilli ◽  
Sridhar Amalakanti ◽  
Phaneeswara-Rao Kommoju ◽  
Srihari Sharma ◽  
Pankaj Goyal ◽  
...  

Abstract The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people and claimed thousands of lives. Starting in China, it is arguably the most precipitous global health calamity of modern times. The entire world has rocked back to fight against the disease and the COVID-19 vaccine is the prime weapon. Even though the conventional vaccine development pipeline usually takes more than a decade, the escalating daily death rates due to COVID-19 infections have resulted in the development of fast-track strategies to bring in the vaccine under a year’s time. Governments, companies, and universities have networked to pool resources and have come up with a number of vaccine candidates. Also, international consortia have emerged to address the distribution of successful candidates. Herein, we summarize these unprecedented developments in vaccine science and discuss the types of COVID-19 vaccines, their developmental strategies, and their roles as well as their limitations.


Sign in / Sign up

Export Citation Format

Share Document