Photodetachment of H– ion in perpendicular electric and magnetic fields near a metal surface

2014 ◽  
Vol 92 (10) ◽  
pp. 1241-1248 ◽  
Author(s):  
De-hua Wang

The photodetachment of the H– ion in perpendicular electric and magnetic fields near a metal surface has been investigated on the basis of the semiclassical closed-orbit theory. Firstly, we give a clear physical picture of the detached electron’s movement and find out the closed orbits of this system. Then we put forward an analytical formula for calculating the photodetachment cross section. It is found that the perpendicular electric and magnetic fields can produce some interesting effects. As the magnetic field is relatively weak, the influence of the electric field and the electrostatic potential dominates and the oscillatory structure in the photodetachment cross section exhibits a smoothly oscillating curve. As we keep the electric field and the ion–surface distance unchanged, with the increase of the magnetic field strength, the number of closed orbits is increased and the oscillatory structure in the photodetachment cross section is characterized by broad Landau level envelops. Therefore, we can use the perpendicular electric and magnetic fields to control the photodetachment of H– near a metal surface. Our study may guide future experimental research on the photodetachment microscopy of negative ion in external fields near surfaces.

1970 ◽  
Vol 4 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Barbara Abraham-Shrauner

Suppression of runaway of electrons in a weak, uniform electric field in a fully ionized Lorentz plasma by crossed magnetic and electric fields is analysed. A uniform, constant magnetic field parallel to a constant or harmonically time varying electric field does not alter runaway from that in the absence of the magnetic field. For crossed, constant fields the passage to runaway or to free motion as described by constant drift motion and spiral motion about the magnetic field is lengthened in time for strong magnetic fields. The new ‘runaway’ time scale is roughly the ratio of the cyclotron frequency to the collision frequency squared for cyclotron frequencies much greater than the collision frequency. All ‘runaway’ time scales may be given approximately by t2E Teff where tE is the characteristic time of the electric field and Teff is the ffective collision time as estimated from the appropriate component of the electrical conductivity.


This paper deals with the observed effect of simultaneous electric and magnetic fields on certain of the more intense helium lines, and is further limited to the case where the fields are uniform and parallel. The effect of parallel fields was first considered by Garbasso, who adopted the classical view of the “rough” Stark-effect on H β as given by Voigt, and concluded that the effects due to the two fields should be simply superimposed. Shortly after this he was able to make visual observations which were restricted to H α owing to intensity requirements. A source of the Lo Surdo type was placed along the axis of the hollow poles of a Weiss magnet, and the analysis made with a Michelson echelon. In the electric field alone Garbasso observed two parallel components and one undisplaced perpendicular component. This corresponds to a so-called “rough” analysis of the Stark-effect in which the individual components are not observed. In the magnetic field he found a normal Zeeman pattern. With combined parallel fields there appeared two parallel components in the position of the Stark components of like polarisation, and two symmetrically placed perpendicular components with the normal Zeeman separation. This simple result could not be given a satisfactory interpretation on classical theory.


1972 ◽  
Vol 50 (6) ◽  
pp. 607-616 ◽  
Author(s):  
V. Ramaswamy ◽  
H. W. Dosso ◽  
J. T. Weaver

The solutions for low-frequency fields of a horizontal magnetic dipole embedded within a two-layer conductor are derived. For convenience, the solutions are expressed in dimensionless form. The amplitudes and phases of the electric and magnetic fields along the surface of the bottom layer are calculated numerically and their dependence on the ratio of the conductivities of the two layers is investigated. Results indicate that, in general, the electric field induced by a subsurface horizontal magnetic dipole is more sensitive to the bottom-layer conductivity than is the magnetic field. Some of the results discussed in this paper are of interest in studying the seabed conductivity.


Author(s):  
Md Abdulla Al Masud ◽  
Noel D’Souza ◽  
Paris von Lockette ◽  
Zoubeida Ounaies

In this study, we demonstrate the electric and magnetic manipulation of nanoscale M-type Barium Hexaferrite (nBF) in polydimethylsiloxane (PDMS) to engineer a multifunctional nanocomposite with improved dielectric and magnetic properties. First, we synthesized the single crystal nBF via the hydrothermal synthesis route. The hydrothermal temperature, duration, and surfactant conditions were optimized to improve the magnetic properties of the nBFs, with further improvement achieved by post-annealing. The annealed nBFs were aligned dielectrophoretically (DEP) in the polymer matrices by applying an AC electric field. Under the influence of this electric field, nBFs were observed to rotate, align and form chains within the polymer matrix. Optical microscopy (OM) imaging was used to determine the electrical alignment conditions (duration, magnitude, and frequency) and these parameters were used to fabricate the composites. A Teflon setup with Indium Tin Oxide (ITO) coated Polyethylene Terephthalate (PET) was used, where the ITO coatings act as electrodes for the electric field-manipulation. To simultaneously apply the magnetic field, this Teflon setup is placed between two permanent magnets capable of generating a 0.6 T external magnetic field. Along with electric and magnetic fields, concurrent heating was applied to cure the PDMS and freeze the microstructure formed due to electric and magnetic fields. Upon completion of the curing step, parallel chain formation is observed under OM. The X-Ray Diffraction (XRD) results also confirm that the particles are magnetically oriented in the direction of the magnetic field within the chain. Vibrating Sample Magnetometry (VSM) measurements and dielectric spectroscopy are used to characterize the extent of anisotropy and improvement in dielectric and magnetic properties compared to random composites. We find that simultaneous electric and magnetic field alignment improves the dielectric properties by 12% compared to just magnetic alignment. We also observe 19% improved squareness ratio when both fields are applied. The possibility of simultaneous electrical and magnetic alignment of magnetic nanoparticles will open up new doors to manipulate and design particle-modified polymers for various applications.


1975 ◽  
Vol 53 (2) ◽  
pp. 133-139 ◽  
Author(s):  
M. P. Srivastava ◽  
P. S. Grover

The variation of the positron annihilation rate λa in noble gases He, Ne, and Ar has been studied in the presence of an external applied magnetic field, when the electric field is kept constant. It is found that λa increases as the magnetic field is increased. In the case of Ar, the dependence is quite appreciable whereas in He and Ne it is comparatively smaller.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


1989 ◽  
Vol 104 (1) ◽  
pp. 449-456
Author(s):  
V. V. Zheleznyakov ◽  
E. Ya. Zlotnik

AbstractIt was shown by Zheleznyakov and Zlotnik (1980a, b) that in complex configurations of solar magnetic fields (in hot loops above the active centres, in neutral current sheets in the preflare phase, in hot X-ray kernels in the initial flare phase) a system of cyclotron lines in the spectrum of microwave radiation is likely to be formed. Such a line was obtained by Willson (1985) in the VLA observations at harmonics of the electron gyrofrequency. This communication interprets these observations on the basis of an active region model in which thermal cyclotron radiation is produced by hot plasma filling the magnetic tube in the corona above a group of spots. In this model the frequency of the recorded 1658 MHz line corresponds to the third harmonic of electron gyrofrequency, which yields the magnetic field (196 + 4) G along the magnetic tube axis. The linewidth Af/f ∼ 0.1 is determined by the 10% inhomogeneity of the magnetic field over the cross-section of the tube; the line profile indicates the kinetic temperature distribution of electrons over the tube cross-section with the maximum value 4 x 106 K. Analysis shows that study of cyclotron lines can serve as an efficient tool for diagnostics of magnetic fields and plasma in the solar active regions and flares.


Sign in / Sign up

Export Citation Format

Share Document