Positron Annihilation Rate Variation in the Presence of Electric and Magnetic Fields

1975 ◽  
Vol 53 (2) ◽  
pp. 133-139 ◽  
Author(s):  
M. P. Srivastava ◽  
P. S. Grover

The variation of the positron annihilation rate λa in noble gases He, Ne, and Ar has been studied in the presence of an external applied magnetic field, when the electric field is kept constant. It is found that λa increases as the magnetic field is increased. In the case of Ar, the dependence is quite appreciable whereas in He and Ne it is comparatively smaller.

1970 ◽  
Vol 4 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Barbara Abraham-Shrauner

Suppression of runaway of electrons in a weak, uniform electric field in a fully ionized Lorentz plasma by crossed magnetic and electric fields is analysed. A uniform, constant magnetic field parallel to a constant or harmonically time varying electric field does not alter runaway from that in the absence of the magnetic field. For crossed, constant fields the passage to runaway or to free motion as described by constant drift motion and spiral motion about the magnetic field is lengthened in time for strong magnetic fields. The new ‘runaway’ time scale is roughly the ratio of the cyclotron frequency to the collision frequency squared for cyclotron frequencies much greater than the collision frequency. All ‘runaway’ time scales may be given approximately by t2E Teff where tE is the characteristic time of the electric field and Teff is the ffective collision time as estimated from the appropriate component of the electrical conductivity.


This paper deals with the observed effect of simultaneous electric and magnetic fields on certain of the more intense helium lines, and is further limited to the case where the fields are uniform and parallel. The effect of parallel fields was first considered by Garbasso, who adopted the classical view of the “rough” Stark-effect on H β as given by Voigt, and concluded that the effects due to the two fields should be simply superimposed. Shortly after this he was able to make visual observations which were restricted to H α owing to intensity requirements. A source of the Lo Surdo type was placed along the axis of the hollow poles of a Weiss magnet, and the analysis made with a Michelson echelon. In the electric field alone Garbasso observed two parallel components and one undisplaced perpendicular component. This corresponds to a so-called “rough” analysis of the Stark-effect in which the individual components are not observed. In the magnetic field he found a normal Zeeman pattern. With combined parallel fields there appeared two parallel components in the position of the Stark components of like polarisation, and two symmetrically placed perpendicular components with the normal Zeeman separation. This simple result could not be given a satisfactory interpretation on classical theory.


1972 ◽  
Vol 50 (6) ◽  
pp. 607-616 ◽  
Author(s):  
V. Ramaswamy ◽  
H. W. Dosso ◽  
J. T. Weaver

The solutions for low-frequency fields of a horizontal magnetic dipole embedded within a two-layer conductor are derived. For convenience, the solutions are expressed in dimensionless form. The amplitudes and phases of the electric and magnetic fields along the surface of the bottom layer are calculated numerically and their dependence on the ratio of the conductivities of the two layers is investigated. Results indicate that, in general, the electric field induced by a subsurface horizontal magnetic dipole is more sensitive to the bottom-layer conductivity than is the magnetic field. Some of the results discussed in this paper are of interest in studying the seabed conductivity.


Author(s):  
Md Abdulla Al Masud ◽  
Noel D’Souza ◽  
Paris von Lockette ◽  
Zoubeida Ounaies

In this study, we demonstrate the electric and magnetic manipulation of nanoscale M-type Barium Hexaferrite (nBF) in polydimethylsiloxane (PDMS) to engineer a multifunctional nanocomposite with improved dielectric and magnetic properties. First, we synthesized the single crystal nBF via the hydrothermal synthesis route. The hydrothermal temperature, duration, and surfactant conditions were optimized to improve the magnetic properties of the nBFs, with further improvement achieved by post-annealing. The annealed nBFs were aligned dielectrophoretically (DEP) in the polymer matrices by applying an AC electric field. Under the influence of this electric field, nBFs were observed to rotate, align and form chains within the polymer matrix. Optical microscopy (OM) imaging was used to determine the electrical alignment conditions (duration, magnitude, and frequency) and these parameters were used to fabricate the composites. A Teflon setup with Indium Tin Oxide (ITO) coated Polyethylene Terephthalate (PET) was used, where the ITO coatings act as electrodes for the electric field-manipulation. To simultaneously apply the magnetic field, this Teflon setup is placed between two permanent magnets capable of generating a 0.6 T external magnetic field. Along with electric and magnetic fields, concurrent heating was applied to cure the PDMS and freeze the microstructure formed due to electric and magnetic fields. Upon completion of the curing step, parallel chain formation is observed under OM. The X-Ray Diffraction (XRD) results also confirm that the particles are magnetically oriented in the direction of the magnetic field within the chain. Vibrating Sample Magnetometry (VSM) measurements and dielectric spectroscopy are used to characterize the extent of anisotropy and improvement in dielectric and magnetic properties compared to random composites. We find that simultaneous electric and magnetic field alignment improves the dielectric properties by 12% compared to just magnetic alignment. We also observe 19% improved squareness ratio when both fields are applied. The possibility of simultaneous electrical and magnetic alignment of magnetic nanoparticles will open up new doors to manipulate and design particle-modified polymers for various applications.


2014 ◽  
Vol 92 (10) ◽  
pp. 1241-1248 ◽  
Author(s):  
De-hua Wang

The photodetachment of the H– ion in perpendicular electric and magnetic fields near a metal surface has been investigated on the basis of the semiclassical closed-orbit theory. Firstly, we give a clear physical picture of the detached electron’s movement and find out the closed orbits of this system. Then we put forward an analytical formula for calculating the photodetachment cross section. It is found that the perpendicular electric and magnetic fields can produce some interesting effects. As the magnetic field is relatively weak, the influence of the electric field and the electrostatic potential dominates and the oscillatory structure in the photodetachment cross section exhibits a smoothly oscillating curve. As we keep the electric field and the ion–surface distance unchanged, with the increase of the magnetic field strength, the number of closed orbits is increased and the oscillatory structure in the photodetachment cross section is characterized by broad Landau level envelops. Therefore, we can use the perpendicular electric and magnetic fields to control the photodetachment of H– near a metal surface. Our study may guide future experimental research on the photodetachment microscopy of negative ion in external fields near surfaces.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


2018 ◽  
Vol 96 (9) ◽  
pp. 961-968
Author(s):  
De-hua Wang

We examine the dynamics of electrons photodetached from the H– ion in time-dependent electric and magnetic fields for the first time. The photodetachment microscopy patterns caused by a time-dependent gradient electric field and magnetic field have been analyzed in great detail based on the semiclassical theory. The interplay of the gradient electric field and magnetic field forces causes an intricate shape of the electron wave and multiple electron trajectories generated by a fixed energy point source can arrive at a given point on the microchannel-plate detector. The interference effects between these electron trajectories cause the oscillatory structures of the electron probability density and electron current distribution, and a set of concentric interference fringes are found at the detector. Our calculation results suggest that the photodetachment microscopy interference pattern on the detector can be adjusted by the electron energy, magnetic field strength, and position of the detector plane. Under certain conditions, the interference pattern in the electron current distribution might be seen on the detector plane localized at a macroscopic distance from the photodetachment source, which can be observed in an actual photodetachment microscopy experiment. Therefore, we make predictions that our work should serve as a guide for future photodetachment microscopy experiments in time-dependent electric and magnetic fields.


Geophysics ◽  
1979 ◽  
Vol 44 (1) ◽  
pp. 53-68 ◽  
Author(s):  
T. D. Gamble ◽  
W. M. Goubau ◽  
J. Clarke

Magnetotelluric measurements were performed simultaneously at two sites 4.8 km apart near Hollister, California. SQUID magnetometers were used to measure fluctuations in two orthogonal horizontal components of the magnetic field. The data obtained at each site were analyzed using the magnetic fields at the other site as a remote reference. In this technique, one multiplies the equations relating the Fourier components of the electric and magnetic fields by a component of magnetic field from the remote reference. By averaging the various crossproducts, estimates of the impedance tensor not biased by noise are obtained, provided there are no correlations between the noises in the remote channels and noises in the local channels. For some data, conventional methods of analysis yielded estimates of apparent resistivities that were biased by noise by as much as two orders of magnitude. Nevertheless, estimates of the apparent resistivity obtained from these same data, using the remote reference technique, were consistent with apparent resistivities calculated from relatively noise‐free data at adjacent periods. The estimated standard deviation for periods shorter than 3 sec was less than 5 percent, and for 87 percent of the data, was less than 2 percent. Where data bands overlapped between periods of 0.33 sec and 1 sec, the average discrepancy between the apparent resistivities was 1.8 percent.


Author(s):  
J. Pierrus

In this chapter, the transition from time-independent to time-dependent source densities and fields is made. It is here that Faraday’s famous nineteenth-century experiments on electromagnetic induction are first encountered. This important phenomenon—whereby a changing magnetic field produces an induced electric field (whose curl is now no longer zero)—forms the basis of most of the questions and solutions which follow. Some new and interesting examples—not usually found in other textbooks—are introduced. These are treated both from an analytical and numerical point of view. Also considered here is the standard yet important topic (at least from a practical standpoint) of mutual and self-inductance. Several questions deal with this concept.


J ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 79-89
Author(s):  
Victoria Hossack ◽  
Michael Persinger ◽  
Blake Dotta

Some species of fish show highly evolved mechanisms by which they can detect exogenous electric and magnetic fields. The detection of electromagnetic fields has been hypothesized to exist in humans, despite the lack of specialized sensors. In this experiment, planaria were tested in a t-maze with weak electric current pulsed in one arm to determine if the planaria showed any indication of being able to detect it. It was found that a small proportion of the population seemed to be attracted to this current. Additionally, if the experiment was preceded by a geomagnetic storm, the planaria showed a linear correlation increase in the variability of their movement in response to the presence of the weak electric field. Both of these results indicate that a subpopulation of planaria show some ability to respond to electromagnetic fields.


Sign in / Sign up

Export Citation Format

Share Document