annihilation rate
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (11) ◽  
pp. 046
Author(s):  
Marco Regis ◽  
Javier Reynoso-Cordova ◽  
Miroslav D. Filipović ◽  
Marcus Brüggen ◽  
Ettore Carretti ◽  
...  

Abstract We present a radio search for WIMP dark matter in the Large Magellanic Cloud (LMC). We make use of a recent deep image of the LMC obtained from observations of the Australian Square Kilometre Array Pathfinder (ASKAP), and processed as part of the Evolutionary Map of the Universe (EMU) survey. LMC is an extremely promising target for WIMP searches at radio frequencies because of the large J-factor and the presence of a substantial magnetic field. We detect no evidence for emission arising from WIMP annihilations and derive stringent bounds on the annihilation rate as a function of the WIMP mass, for different annihilation channels. This work excludes the thermal cross section for masses below 480 GeV and annihilation into quarks.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ligong Bian ◽  
Xuewen Liu ◽  
Ke-Pan Xie

Abstract We study the superheavy dark matter (DM) scenario in an extended B−L model, where one generation of right-handed neutrino νR is the DM candidate. If there is a new lighter sterile neutrino that co-annihilate with the DM candidate, then the annihilation rate is exponentially enhanced, allowing a DM mass much heavier than the Griest-Kamionkowski bound (∼105 GeV). We demonstrate that a DM mass MνR ≳ 1013 GeV can be achieved. Although beyond the scale of any traditional DM searching strategy, this scenario is testable via gravitational waves (GWs) emitted by the cosmic strings from the U(1)B−L breaking. Quantitative calculations show that the DM mass $$ \mathcal{O} $$ O (109−1013 GeV) can be probed by future GW detectors.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Raffaele Tito D’Agnolo ◽  
Di Liu ◽  
Joshua T. Ruderman ◽  
Po-Jen Wang

Abstract We present kinematically forbidden dark matter annihilations into Standard Model leptons. This mechanism precisely selects the dark matter mass that gives the observed relic abundance. This is qualitatively different from existing models of thermal dark matter, where fixing the relic density typically leaves open orders of magnitude of viable dark matter masses. Forbidden annihilations require the dark matter to be close in mass to the particles that dominate its annihilation rate. We show examples where the dark matter mass is close to the muon mass, the tau mass, or the average of the tau and muon masses. We find that most of the relevant parameter space can be covered by the next generation of proposed beam-dump experiments and future high-luminosity electron positron colliders. Forbidden dark matter predicts large couplings to the Standard Model that can explain the observed value of (g − 2)μ.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Thomas G. Rizzo

Abstract The possibility of light dark matter (DM) annihilating through a dark photon (DP) which kinetically mixes (KM) with the Standard Model (SM) hypercharge field is a very attractive scenario. For DM in the interesting mass range below ∼ 1 GeV, it is well known that bounds from the CMB provide a very strong model building constraint forcing the DM annihilation cross section to be roughly 3 orders of magnitude below that needed to reproduce the observed relic density. Under most circumstances this removes the possibility of an s-wave annihilation process for DM in this mass range as would be the case, e.g., if the DM were a Dirac fermion. In an extra-dimensional setup explored previously, it was found that the s-channel exchange of multiple gauge bosons could simultaneously encompass a suppressed annihilation cross section during the CMB era while also producing a sufficiently large annihilation rate during freeze-out to recover the DM relic density. In this paper, we analyze more globally the necessary requirements for this mechanism to work successfully and then realize them within the context of a simple model with two ‘dark’ gauge bosons having masses of a similar magnitude and whose contributions to the annihilation amplitude destructively interfere. We show that if the DM mass threshold lies appropriately in the saddle region of this destructive interference between the two resonance humps it then becomes possible to satisfy these requirements simultaneously provided several ancillary conditions are met. The multiple constraints on the parameter space of this setup are then explored in detail to identify the phenomenologically successful regions.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Disha Bhatia ◽  
Satyanarayan Mukhopadhyay

Abstract Using the upper bound on the inelastic reaction cross-section implied by S-matrix unitarity, we derive the thermally averaged maximum dark matter (DM) annihilation rate for general k → 2 number-changing reactions, with k ≥ 2, taking place either entirely within the dark sector, or involving standard model fields. This translates to a maximum mass of the particle saturating the observed DM abundance, which, for dominantly s-wave annihilations, is obtained to be around 130 TeV, 1 GeV, 7 MeV and 110 keV, for k = 2, 3, 4 and 5, respectively, in a radiation dominated Universe, for a real or complex scalar DM stabilized by a minimal symmetry. For modified thermal histories in the pre-big bang nucleosynthesis era, with an intermediate period of matter domination, values of reheating temperature higher than $$ \mathcal{O}(200) $$ O 200 GeV for k ≥ 4, $$ \mathcal{O}(1) $$ O 1 TeV for k = 3 and $$ \mathcal{O}(50) $$ O 50 TeV for k = 2 are strongly disfavoured by the combined requirements of unitarity and DM relic abundance, for DM freeze-out before reheating.


2021 ◽  
Vol 1016 ◽  
pp. 852-856
Author(s):  
Waqas Muhammad ◽  
Daniel Wei ◽  
Étienne Martin

The present study investigates the occurrence and effectiveness of the dissociation mechanism of Σ3 CSL boundaries into its variants such as Σ9 and Σ27a-b during strain-annealed grain boundary engineering (GBE) of Hastelloy-X. Multiple cold-rolling strain levels and annealing conditions are studied and it is observed that the density of ∑3 boundaries decreases proportionally to the amount of strain induced boundary migration (SIBM) during the GBE process. The dissociation mechanism of Σ3 annealing twins is activated at the onset of SIBM, causing an increase in the density of the Σ3n variants. It is shown that at high annealing times or temperatures, the rate of generation of CSL boundaries through dissociation mechanism is lower than their annihilation rate. It is further suggested that the dissociation mechanism of ∑3 boundaries during GB migration is more efficient when the amount of applied strain prior to annealing is kept low, thus promoting disruption of the random GB network.


2019 ◽  
Vol 100 (15) ◽  
Author(s):  
Eric Chatterjee ◽  
Daniel B. S. Soh ◽  
Christopher Rogers ◽  
Dodd J. Gray ◽  
Hideo Mabuchi

Galaxies ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Shin’ichiro Ando ◽  
Tomoaki Ishiyama ◽  
Nagisa Hiroshima

The presence of dark matter substructure will boost the signatures of dark matter annihilation. We review recent progress on estimates of this subhalo boost factor—a ratio of the luminosity from annihilation in the subhalos to that originating the smooth component—based on both numerical N-body simulations and semi-analytic modelings. Since subhalos of all the scales, ranging from the Earth mass (as expected, e.g., the supersymmetric neutralino, a prime candidate for cold dark matter) to galaxies or larger, give substantial contribution to the annihilation rate, it is essential to understand subhalo properties over a large dynamic range of more than twenty orders of magnitude in masses. Even though numerical simulations give the most accurate assessment in resolved regimes, extrapolating the subhalo properties down in sub-grid scales comes with great uncertainties—a straightforward extrapolation yields a very large amount of the subhalo boost factor of ≳100 for galaxy-size halos. Physically motivated theoretical models based on analytic prescriptions such as the extended Press-Schechter formalism and tidal stripping modeling, which are well tested against the simulation results, predict a more modest boost of order unity for the galaxy-size halos. Giving an accurate assessment of the boost factor is essential for indirect dark matter searches and thus, having models calibrated at large ranges of host masses and redshifts, is strongly urged upon.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Aman Soni ◽  
Alankar Alankar

To understand the formation of direct chill (DC)-casting defects, e.g., butt curl and crack formation, it is essential to take into account the effect of temperature variation, strain rate, and their role in the constitutive behavior of the DC-cast alloys. For the correct prediction of defects due to thermal stresses during DC casting, one needs to rely on the fundamentals of mechanisms that may be relevant to the temperatures at below solidus temperatures. This research work aims to find a suitable physically based model for the as-cast aluminum alloys, namely AA3104, AA5182, and AA6111, which can describe the constitutive behavior at below solidus temperatures during complex loading conditions of temperatures and strain rates. In the present work, an earlier measured and modeled (Alankar and Wells, 2010, “Constitutive Behavior of As-Cast Aluminum Alloys AA3104, AA5182 and AA6111 at Below Solidus Temperatures,” Mater. Sci. Eng. A, 527, pp. 7812–7820) stress–strain data are analyzed using the Voce equation and Kocks–Mecking (KM) model. KM model is capable of predicting the hardening and recovery behavior during complex conditions of strain, strain rate, and temperatures during DC casting. Recovery is dependent on temperature and strain rate, and thus, relevant parameters are determined based on the temperature-sensitive annihilation rate of dislocations. For the KM model, we have estimated k1 parameter as a function of temperature, and k2 has been further modeled based on the temperature and strain rate. KM model is able to fit the constant temperature uniaxial tests within 1.5% of the regenerated data.


Sign in / Sign up

Export Citation Format

Share Document