scholarly journals Surface interaction effects to a Klein–Gordon particle embedded in a Woods–Saxon potential well in terms of thermodynamic functions,

2018 ◽  
Vol 96 (7) ◽  
pp. 843-850 ◽  
Author(s):  
B.C. Lütfüoğlu

Recently, it has been investigated how the thermodynamic functions vary when the surface interactions are taken into account for a nucleon that is confined in a Woods–Saxon potential well, with a non-relativistic point of view. In this manuscript, the same problem is handled with a relativistic point of view. More precisely, the Klein–Gordon equation is solved in the presence of mixed scalar–vector generalized symmetric Woods–Saxon potential energy that is coupled to momentum and mass. Employing the continuity conditions the bound state energy spectra of an arbitrarily parameterized well are derived. It is observed that, when a term representing the surface effect is taken into account, the character of Helmholtz free energy and entropy versus temperature are modified in a similar fashion as this inclusion is done in the non-relativistic regime. Whereas it is found that this inclusion leads to different characters to internal energy and specific heat functions for relativistic and non-relativistic regimes.

2010 ◽  
Vol 19 (07) ◽  
pp. 1463-1475 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
S. V. BADALOV

The radial part of the Klein–Gordon equation for the Woods–Saxon potential is solved. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for any l-states. The exact bound state energy eigenvalues and the corresponding eigenfunctions are obtained on the various values of the quantum numbers n and l. The nonrelativistic limit of the bound state energy spectrum was also found.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Eser Olğar ◽  
Haydar Mutaf

The bound-state solution of s-wave Klein-Gordon equation is calculated for Woods-Saxon potential by using the asymptotic iteration method (AIM). The energy eigenvalues and eigenfunctions are obtained for the required condition of bound-state solutions.


Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
C. A. Onate ◽  
M. C. Onyeaju ◽  
G. J. Rampho

In this study, the Klein–Gordon equation (KGE) is solved with the attractive radial potential using the Nikiforov–Uvarov-functional-analysis (NUFA) method in higher dimensions. By employing the Greene–Aldrich approximation scheme, the approximate bound state energy equations as well as the corresponding radial wave function are obtained in closed form. Also, the expression for the scattering phase shift is obtained in D-dimensions. The effects of the screening parameter and the total angular momentum quantum number on the bound state energy and the scattering states’ phase shift are also studied numerically and graphically at different dimensions. An interesting result of this study is the inter-dimensional degeneracy symmetry for scattering phase shift. Hence, this concept is applicable in the areas of nuclear and particle physics.


2004 ◽  
Vol 19 (26) ◽  
pp. 2009-2012 ◽  
Author(s):  
GANG CHEN

In this letter, the analytic relativistic bound state energy spectrum and wave functions of the s-wave Klein–Gordon equation for the generalized Hulthén potential are obtained through functional analytical method. The results also contain the analytic relativistic solutions of the s-wave Klein–Gordon equation for the Wood–Saxon and standard Hulthén potentials, however, the required results of the exponential potential are not derived from this paper.


2008 ◽  
Vol 23 (35) ◽  
pp. 3005-3013 ◽  
Author(s):  
A. REZAEI AKBARIEH ◽  
H. MOTAVALI

The exact solutions of the one-dimensional Klein–Gordon equation for the Rosen–Morse type potential with equal scalar and vector potentials are presented. First, we briefly review Nikiforov–Uvarov mathematical method. Using this method, wave functions and corresponding exact energy equation are obtained for the s-wave bound state. It has been shown that the results for Rosen–Morse type potentials reduce to the standard Rosen–Morse well and Eckart potentials in the special case. The PT-symmetry for these potentials is also considered.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550102 ◽  
Author(s):  
Haryanto M. Siahaan

In this paper, we show the instability of a charged massive scalar field in bound states around Kerr–Sen black holes. By matching the near and far region solutions of the radial part in the corresponding Klein–Gordon equation, one can show that the frequency of bound state scalar fields contains an imaginary component which gives rise to an amplification factor for the fields. Hence, the unstable modes for a charged and massive scalar perturbation in Kerr–Sen background can be shown.


Sign in / Sign up

Export Citation Format

Share Document