scholarly journals Bound-State Solution of s-Wave Klein-Gordon Equation for Woods-Saxon Potential

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Eser Olğar ◽  
Haydar Mutaf

The bound-state solution of s-wave Klein-Gordon equation is calculated for Woods-Saxon potential by using the asymptotic iteration method (AIM). The energy eigenvalues and eigenfunctions are obtained for the required condition of bound-state solutions.


2010 ◽  
Vol 19 (07) ◽  
pp. 1463-1475 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
S. V. BADALOV

The radial part of the Klein–Gordon equation for the Woods–Saxon potential is solved. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for any l-states. The exact bound state energy eigenvalues and the corresponding eigenfunctions are obtained on the various values of the quantum numbers n and l. The nonrelativistic limit of the bound state energy spectrum was also found.



2008 ◽  
Vol 23 (35) ◽  
pp. 3005-3013 ◽  
Author(s):  
A. REZAEI AKBARIEH ◽  
H. MOTAVALI

The exact solutions of the one-dimensional Klein–Gordon equation for the Rosen–Morse type potential with equal scalar and vector potentials are presented. First, we briefly review Nikiforov–Uvarov mathematical method. Using this method, wave functions and corresponding exact energy equation are obtained for the s-wave bound state. It has been shown that the results for Rosen–Morse type potentials reduce to the standard Rosen–Morse well and Eckart potentials in the special case. The PT-symmetry for these potentials is also considered.





Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Nasser Saad ◽  
Richard Hall ◽  
Hakan Ciftci

AbstractWe apply the Asymptotic Iteration Method to obtain the bound-state energy spectrum for the d-dimensional Klein-Gordon equation with scalar S(r) and vector potentials V(r). When S(r) and V(r) are both Coulombic, we obtain all the exact solutions; when the potentials are both of Kratzer type, we obtain all the exact solutions for S(r) = V(r); if S(r) > V(r) we obtain exact solutions under certain constraints on the potential parameters: in this case, a possible general solution is found in terms of a monic polynomial, whose coefficients form a set of elementary symmetric polynomials.



2009 ◽  
Vol 20 (10) ◽  
pp. 1563-1582 ◽  
Author(s):  
SAMEER M. IKHDAIR

We present an approximate analytic solution of the Klein–Gordon equation in the presence of equal scalar and vector generalized deformed hyperbolic potential functions by means of parametric generalization of the Nikiforov–Uvarov method. We obtain the approximate bound-state rotational–vibrational (ro–vibrational) energy levels and the corresponding normalized wave functions expressed in terms of the Jacobi polynomial [Formula: see text], where μ > -1, ν > -1, and x ∈ [-1, +1] for a spin-zero particle in a closed form. Special cases are studied including the nonrelativistic solutions obtained by appropriate choice of parameters and also the s-wave solutions.



2009 ◽  
Vol 20 (01) ◽  
pp. 25-45 ◽  
Author(s):  
SAMEER M. IKHDAIR

We solve the Klein–Gordon equation in any D-dimension for the scalar and vector general Hulthén-type potentials with any l by using an approximation scheme for the centrifugal potential. Nikiforov–Uvarov method is used in the calculations. We obtain the bound-state energy eigenvalues and the corresponding eigenfunctions of spin-zero particles in terms of Jacobi polynomials. The eigenfunctions are physical and the energy eigenvalues are in good agreement with those results obtained by other methods for D = 1 and 3 dimensions. Our results are valid for q = 1 value when l ≠ 0 and for any q value when l = 0 and D = 1 or 3. The s-wave (l = 0) binding energies for a particle of rest mass m0 = 1 are calculated for the three lower-lying states (n = 0, 1, 2) using pure vector and pure scalar potentials.



Sign in / Sign up

Export Citation Format

Share Document