scholarly journals Cross Section Ionization By Electron Impact Of Helium Like Ions

Author(s):  
Manel Hariz Belgacem ◽  
Elhabib Guedda ◽  
Haikel Jelassi

<sub></sub> In this paper we present our calculation of the cross section ionization by electron impact of C V, N VI and O VII. Using the Flexible Atomic Code (FAC), we obtain the cross sections for the ionization of these ions from the ground state 1<sup>1</sup>S, and from the unstable states 2<sup>1</sup>S and 2<sup>3</sup>S. Our results are in good agreement with those based on the Coulomb Born (CB) approximation and the available measurements.

1984 ◽  
Vol 62 (1) ◽  
pp. 1-9 ◽  
Author(s):  
K. Becker ◽  
J. W. McConkey

We have studied the Lyman [Formula: see text] and Werner [Formula: see text] band emissions produced by 20–500-eV electrons incident on molecular deuterium, D2. Emission cross sections of (3.7 ± 0.9) × 10−17 cm2 for the B → X and (3.54 ± 0.74) × 10−17 cm2 for the C → X system have been determined at 100-eV impact energy. Cascading did not play an important role in the [Formula: see text] emission, but it was shown to affect the [Formula: see text] emission seriously, particularly for impact energies below 50 eV. We estimate the cross section for direct excitation of the [Formula: see text] state and the cascade cross section to be 2.95 × 10−17 and 0.75 × 10−17 cm2, at 100 eV respectively. The cascade cross section is 20 ± 10% of the total B → X emission cross section, and is essentially constant in the energy range 300–50 eV, but increases significantly for lower impact energies, e.g., to 40 ± 15% at 27.5 eV. The cross section for the atomic 2p → 1s Lyman α emission from D2 has also been measured and the value of 1.00 × 10−17 cm2 at 100 eV is 20% smaller than the cross section for Lyman α emission from H2.


Author(s):  
E. H. S. Burhop ◽  
H. S. W. Massey

Calculations have been made of the cross-section for ionization of the inner shells of atoms by electron impact in the cases of the K-shells of nickel, silver, mercury and of the three L-shells of silver and mercury.The agreement with experiment is reasonably good for the K-shell ionization, but only fair in the case of the rather meagre experimental data available for the L-shell. The values obtained for the relative ionization in the K- and L-shells are in good agreement with those to be expected from experiment.


1970 ◽  
Vol 48 (3) ◽  
pp. 275-278 ◽  
Author(s):  
J. Davis ◽  
S. Morin

We present cross-section calculations for excitation of singly-ionized barium ions by electron impact over the energy range from 3 to 100 eV. The cross sections were evaluated using Burgess' semiclassical method. Finally, our predictions are compared with two other current techniques and some recent experimental measurements. The agreement was found to be good.


2020 ◽  
Vol 29 (08) ◽  
pp. 2050062
Author(s):  
Mustafa Yiğit

Studies on the cross-sections of (n,n[Formula: see text]) reactions which are energetically possible, about 14 MeV neutrons are quite scarce. In this paper, the cross-sections of (n,n[Formula: see text] nuclear reactions at [Formula: see text]14–15 MeV are analyzed by using a new empirical formula based on the statistical theory. We show that neutron cross-sections are closely related to the [Formula: see text]-value of nuclear reaction, in particular for (n,n[Formula: see text]) channels. Results obtained with this empirical formula show good agreement with the available measured cross-section values. We hope that the estimations on the cross-sections using the present formalism may be helpful in future studies in this field.


1988 ◽  
Vol 66 (4) ◽  
pp. 349-357 ◽  
Author(s):  
J. L. Forand ◽  
S. Wang ◽  
J. M. Woolsey ◽  
J. W. McConkey

A detailed description is given of a technique in which emissions from H and H2 are used to calibrate an apparatus used for electron-impact emission cross-section measurements in the wavelength range 90–130 nm. Absolute emission cross sections have been measured at 200 eV electron-impact energy for the 120 nm N I line following dissociative excitation of N2 and for the Ar and Ar+ lines at 104.8, 106.7, 92.0, and 93.8 nm respectively. Good agreement with earlier works is obtained in the case of the N I line when earlier data are renormalized to take into account the recent revision of the cross section for production of Lyman α from H2. Measurements of the 104.8 and 106.7 nm lines suggest a 40% cascade component for the latter line at energies of 200 eV and above.


2009 ◽  
Vol 1 (2) ◽  
pp. 173-181 ◽  
Author(s):  
M. M. Haque ◽  
M. T. Islam ◽  
M. A. Hafiz ◽  
R. U. Miah ◽  
M. S. Uddin

The cross sections of Ge isotopes were measured with the activation method at 14.8 MeV neutron energy. The quasi-monoenergetic neutron beams were produced via the 3H(d,n)4He reaction at the 150 kV J-25 neutron generator of INST, AERE. The characteristics γ-lines of the product nuclei were measured with a closed end coaxial 17.5 cm2 high purity germanium (HPGe) detector gamma ray spectroscopy. The cross sections were determined with reference to the known 27Al(n,α)24Na reaction. Cross section data are presented for 72Ge(n,p)72Ga, 74Ge(n,α)71mZn and 76Ge(n,2n)75m+gGe reactions. The cross section values obtained for the above reactions were 24.78±1.75 mb, 1.69±0.11 mb and 860±50 mb, respectively. The results obtained were compared with the values reported in literature as well as theoretical calculation performed by the statistical code SINCROS-II. The experimental data were found fairly in good agreement with the calculated and literature data.  Keywords: Activation cross section; Neutron induced reaction; Gamma-ray spectroscopy; 14.8 MeV. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.1532  


1974 ◽  
Vol 52 (4) ◽  
pp. 349-354 ◽  
Author(s):  
N. A. Cherepkov ◽  
L. V. Chernysheva ◽  
V. Radojević ◽  
I. Pavlin

Photoionization cross sections for the outer shell of the nitrogen atom ground state are calculated in the single-particle Hartree–Fock approximation and, in order to take into account many-electron correlations, also in the Random Phase Approximation with Exchange (RPAE). To be able to apply the RPAE, its modification for the half-filled shell atom, such as nitrogen atom, is presented. Calculation of length and velocity forms of the cross section in both approximations are compared with the available experimental data, and a good agreement is obtained. It has been found that in the RPAE the influence of many-electron correlations in a nitrogen atom is not great, but it is very important since, in contrast to the Hartree–Fock approximation, it results in the validity of the sum rule and the coincidence of the length and velocity forms of the cross sections, in agreement with the requirement of the general theory. The angular distribution of photoelectrons is also calculated in the RPAE, which has not been measured so far.


1975 ◽  
Vol 53 (21) ◽  
pp. 2438-2444 ◽  
Author(s):  
P. Marmet ◽  
E. Bolduc ◽  
J. J. Quémener

This work reports numerous atomic levels of Ar observed between 43.38 and 60 eV above the ground state of Ar I. These levels, until now undetected, produce weak perturbations on the double ionization curve obtained by electron impact. The cross section near this Ar++ threshold varies very nearly as a quadratic function. Most of the reported levels of argon have the configuration 3s3p54l 4l′. Ionic states are also responsible for some of these structures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Junhua Luo ◽  
Li Jiang

Abstract The (n,α) and (n,p) cross-sections and their isomeric ratios (σ m /σ g ) were measured at 13–15 MeV for 92Mo and 95Mo by activation and off-line γ-ray spectrometry. The activated Mo samples combined with Al foils were used to obtain the cross-section values and the neutron flux, generated using the 3H(d,n)4He reaction. The cross-sections of the ground states were obtained using the metastable state absolute cross-sections and the residual nuclear decay rule. The excitation functions, total cross-sections, and isomeric ratios for the 92Mo(n,α)89m,gZr and 95Mo(n,p)95m,gNb reactions were calculated using the TALYS-1.95 software. 92Mo(n,α)89m + gZr and 95Mo(n,p)95m + gNb reaction excitation functions were obtained using the EMPIRE-3.2.3 package. These simulation results were compared with the corresponding experimental data and with the evaluated data from the ENDF/B-VIII.0, JEFF-3.3, CENDL-3, and ROSFOND libraries. Only partial agreements were observed.


1979 ◽  
Vol 57 (11) ◽  
pp. 1949-1951 ◽  
Author(s):  
M. A. M. Shahabuddin ◽  
J. C. Waddington

In the [Formula: see text] Al reaction at Ep = 17.0 MeV, the cross section and analyzing power angular distributions for several Jπ = 5/2+ states are found to be quite different. Except for the ground state, neither the back angle cross sections nor the analyzing powers for these states can be reproduced by cluster DWBA or CCBA calculations. It is thus inferred that this might be due to the dependence of the reaction on the structure of these states.


Sign in / Sign up

Export Citation Format

Share Document