Pedigrees and genetic base of flax cultivars registered in Canada

2016 ◽  
Vol 96 (5) ◽  
pp. 837-852 ◽  
Author(s):  
Frank M. You ◽  
Scott D. Duguid ◽  
Irene Lam ◽  
Sylvie Cloutier ◽  
Khalid Y. Rashid ◽  
...  

Flax is an important oilseed crop with industrial, animal, and human nutrition uses. Breeding programs for linseed and fibre flax were initiated in Canada in the early 1900s. A total of 82 flax cultivars have been registered in Canada since 1910, including 24 cultivars introduced from foreign countries and 58 cultivars developed by Canadian breeders. This study collated pedigree data of Canadian flax cultivars and quantified their genetic base via pedigree analysis and coefficient of parentage (CP). A fairly high mean CP of 0.14 was observed between all registered cultivars; this value was even higher (0.23) when only the 46 cultivars released from 1981–2015 were considered. The registered cultivars traced back to 46 ancestors; 72% originated from foreign countries and contributed 83% of the genetic base of all cultivars, illustrating the dominant role played by foreign germplasm in the genetic improvement of Canadian flax. The top 11 ancestors contributed 70%–93% of the genetic base of modern flax cultivars released in the last three decades and formed the core gene pool of Canadian flax cultivars. The genetic base of Canadian cultivars is relatively narrow, although it has gradually expanded, especially in the last two decades. Broadening the genetic base through the introduction of new exotic germplasm is needed to invigorate the gene pool of Canadian flax breeding programs.

BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
L. M. Egan ◽  
R. W. Hofmann ◽  
P. Seguin ◽  
K. Ghamkhar ◽  
V. Hoyos-Villegas

Abstract Background Prebreeding in plants is the activity designed to identify useful characteristics from wild germplasm and its integration in breeding programs. Prebreeding aims to introduce new variation into the populations of a species of interest. Pedigree analysis is a valuable tool for evaluation of variation in genebanks where pedigree maps are used to visualize and describe population structure and variation within these populations. Margot Forde Germplasm Centre (MFGC) is New Zealand’s national forage genebank and holds a collection of ~ 75 species of the genus Trifolium, of which only a dozen have been taken through prebreeding programs. The main objective of this study was to construct pedigree maps and analyse patterns of relatedness for seven minor Trifolium species accessions contained at the MFGC. These species are Trifolium ambiguum, Trifolium arvense, Trifolium dubium, Trifolium hybridum, Trifolium medium, Trifolium subterraneum and the Trifolium repens x Trifolium occidentale interspecific hybrids. We present a history of Trifolium spp. prebreeding in New Zealand and inform breeders of possible alternative forage species to use. Results Pedigree data from accessions introduced between 1950 and 2016 were used and filtered based on breeding activity. Kinship levels among Trifolium spp. remained below 8% and no inbreeding was found. Influential ancestors that contributed largely to populations structure were identified. The Australian cultivar ‘Monaro’ had a strong influence over the whole population of accessions in T. ambiguum. T. subterraneum and T. repens x T. occidentale had the largest number of generations (3). T. ambiguum and T. medium had the highest cumulative kinship across the decades. Conclusions We conclude that there are high levels of diversity in the seven Trifolium spp. studied. However, collection and prebreeding efforts must be strengthened to maximize utilization and bring useful genetic variation.


Author(s):  
S. P. Jeevan Kumar ◽  
C. Susmita ◽  
K. V. Sripathy ◽  
Dinesh K. Agarwal ◽  
Govind Pal ◽  
...  

Abstract Background The genetic base of soybean cultivars in India has been reported to be extremely narrow, due to repeated use of few selected and elite genotypes as parents in the breeding programmes. This ultimately led to the reduction of genetic variability among existing soybean cultivars and stagnation in crop yield. Thus in order to enhance production and productivity of soybean, broadening of genetic base and exploring untapped valuable genetic diversity has become quite indispensable. This could be successfully accomplished through molecular characterization of soybean genotypes using various DNA based markers. Hence, an attempt was made to study the molecular divergence and relatedness among 29 genotypes of soybean using SSR markers. Methods and results A total of 35 SSR primers were deployed to study the genetic divergence among 29 genotypes of soybean. Among them, 14 primer pairs were found to be polymorphic producing a total of 34 polymorphic alleles; and the allele number for each locus ranged from two to four with an average of 2.43 alleles per primer pair. Polymorphic information content (PIC) values of SSRs ranged from 0.064 to 0.689 with an average of 0.331. The dendrogram constructed based on dissimilarity indices clustered the 29 genotypes into two major groups and four sub-groups. Similarly, principal coordinate analysis grouped the genotypes into four major groups that exactly corresponded to the clustering of genotypes among four sub-groups of dendrogram. Besides, the study has reported eight unique and two rare alleles that could be potentially utilized for genetic purity analysis and cultivar identification in soybean. Conclusion In the present investigation, two major clusters were reported and grouping of large number of genotypes in each cluster indicated high degree of genetic resemblance and narrow genetic base among the genotypes used in the study. With respect to the primers used in the study, the values of PIC and other related parameters revealed that the selected SSR markers are moderately informative and could be potentially utilized for diversity analysis of soybean. The clustering pattern of dendrogram constructed based on SSR loci profile displayed good agreement with the cultivar’s pedigree information. High level of genetic similarity observed among the genotypes from the present study necessitates the inclusion of wild relatives, land races and traditional cultivars in future soybean breeding programmes to widen the crop gene pool. Thus, hybridization among diverse gene pool could result in more heterotic combinations ultimately enhancing genetic gain, crop yield and resistance to various stress factors.


Euphytica ◽  
2005 ◽  
Vol 142 (1-2) ◽  
pp. 23-31 ◽  
Author(s):  
J. Gopal ◽  
K. Oyama

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 353
Author(s):  
Małgorzata Goleman ◽  
Ireneusz Balicki ◽  
Anna Radko ◽  
Iwona Rozempolska-Rucińska ◽  
Grzegorz Zięba

The aim of the study was to assess the genetic variability of the Polish Greyhound population based on pedigree analysis and molecular DNA testing and to determine the degree of relatedness among individuals in the population. Pedigree data of 912 Polish Greyhounds recorded in pedigree books since they were opened for this breed were analyzed. For molecular testing, DNA was obtained from cheek swabs taken from 235 dogs of the tested breed. A panel of 21 markers (Short Tandem Repeat—STR) was used. The mean inbreeding determined for the Polish Greyhound population based on pedigree analyses was low and amounted to 11.8%, but as many as 872 individuals of the 912 dogs in the studied population were inbred. A total of 83 founders (at least one unknown parent) were identified, among which 27 founders had both unknown parents. Full-sibling groups consisted of 130 individuals, with a minimum and maximum litter size of 2 and 16, respectively. The average litter size was 5.969. Gene diversity calculated based on the mean kinship matrix was 0.862 and the population mean kinship was 0.138. The founder genome equivalent based on the mean kinship matrix was 3.61; the founder genome surviving level was 12.34; the mean Ne was estimated at 21.76; and the Ne/N ratio was 0.135. The FIS inbreeding coefficient for 21 STR was negative, and the mean FIS value for all loci had a low negative value (−0.018). These values suggest a low level of inbreeding in the examined breed as well as the avoidance of mating related animals.


Author(s):  
Hari Kesh ◽  
Prashant Kaushik

Melon (Cucumis melo L.) a member of family Cucurbitaceae is extensively cultivated for its fleshy fruits. Based on the specific agro-climatic zones of cultivation as well as concerning the regional preferences, melon displays significant variability phenotypic and biochemical attributes. Below, an effort is put forth to considerably evaluate the scope of achievements while in the growth as well as the enactment of melon breeding programs by employing the newest solutions. Melon breeding has achieved critical milestones throughout the previous century, and we hope this trend will go on to persist down the road. However, studies have to determine new genetic information for genes associated with the challenges imposed by climate change. The identification of valuable hereditary and also metabolic variability in the form of landraces and melon wild relatives will be useful for harvest diversification and also for the broadening of the cultivated melon genetic base. Whereas, considerable information on genomics, and melon metabolomics, is beneficial for dissecting the basis of the inheritance of important traits and their impact on the former characteristics. Overall, we hope the manuscript is going to serve as a crucial resource for the melon breeders.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 148
Author(s):  
Sepideh Rouholamin ◽  
Vivi Arief ◽  
Ian Delacy ◽  
Kaye Basford

Genetic diversity is an essential part of successful crop development and can be evaluated by different methods, e.g. the Coefficient of Parentage (COP). This coefficient is established on pedigree data. This method can determine the variation among genotypes without the influence of environment effects as would be the case for field data. This study measured genetic diversity among 317 wheat cultivars from a population generated by the speed breeding technique. Using pedigree data, we determined the associations between parents and individuals, and then used the pattern analysis techniques of principal component analysis and clustering. The results enabled an appropriate graphical representation of wheat cultivars. This information is useful for selecting future parents in breeding programs. This demonstrates that using COP is a viable way to evaluate diversity among genotypes, especially in inbred populations.


1987 ◽  
Vol 36 (1) ◽  
pp. 21-27 ◽  
Author(s):  
J.L. Hopper ◽  
P.L. Derrick ◽  
C.A. Clifford

AbstractAdvances in computer technology have made possible a greater sophistication in the statistical analysis of pedigree data, however this is not necessarily manifest by fitting more comprehensive causative models. Planned twin and family studies measure numerous explanatory variables, including perhaps genetic and DNA marker information status on all pedigree members, and the cohabitation of all pairs of individuals. A statistical analysis should examine the contribution of these measured factors on individual means, and in explaining the variation and covariation between individuals, concurrently with the postulated effect of unmeasured factors such as polygenes. We present two models that meet this requirement: the Multivariate Normal Model for Pedigree Analysis for quantitative traits, and a Log-Linear Model for Binary Pedigree Data. For both models, important issues are examination of fit, detection of outlier pedigrees and outlier individuals, and critical examination of the model assumptions. Procedures for fulfilling these needs and examples of modelling are discussed.


1995 ◽  
Vol 75 (1) ◽  
pp. 45-53 ◽  
Author(s):  
L. W. Kannenberg ◽  
D. E. Falk

Although plant breeders recognize that their working germplasm is constricted, most make little use of the extensive genetic variability in gene banks and other collections. This is because breeders continue to make reasonable progress in most crop species and broadening the activated genetic base generally will dilute agronomic performance. Yet new germplasm can (1) raise the genetic ceiling on improvement, (2) decrease vulnerability to biotic and abiotic stresses, and (3) add new developmental pathways and ecological adaptations. Two breeding systems — HOPE for corn and RIPE for barley — are described which can significantly broaden the genetic base deployed in breeding programs while still producing lines and cultivars with commercial potential. The Hierarchical Open-ended Population Enrichment (HOPE) breeding system consists of two complementary sets, each of four gene pools arranged in a hierarchy based on agronomic performance. Introductions are added continually and desirable genes and gene complexes can routinely move upward in the hierarchy. Increasingly stringent selection procedures at each higher level of the hierarchy shape the extensive variability at the lower levels into the quality germplasm at the Elite level, which serves as the source of inbred lines. The Recurrent Introgressive Population Enrichment (RIPE) breeding system for barley employs male sterile facilitated recurrent selection to progressively introgress new genes and gene complexes into an Elite population which serves as the source of potential new cultivars. Key words: Broad-based breeding system, HOPE (maize), hierarchical open-ended system, RIPE (barley), recurrent introgressive selection, male sterile facilitated selection


Sign in / Sign up

Export Citation Format

Share Document