A NOTE ON THE POLAROGRAPHIC ANALYSIS OF HYDROGEN PEROXIDE

1948 ◽  
Vol 26b (12) ◽  
pp. 767-772
Author(s):  
Paul A. Giguère ◽  
J. B. Jaillet

The determination of hydrogen peroxide at concentrations higher than those normally covered in polarography was studied with various electrodes. The diffusion current was found to increase linearly with the peroxide concentration up to 0.15% with the dropping mercury electrode and up to nearly 1% with a fixed platinum microelectrode. Under these conditions the limiting current was about 10 times greater than that usually observed. Although the solutions were supersaturated with oxygen, traces of strychnine sulphate were sufficient to suppress all maxima.

Author(s):  
Abdul Aziz Ramadan ◽  
Hasna Mandil ◽  
Reham Abu-saleh

<p><strong>Objective: </strong>An easy, fast, accurate and sensitive differential pulse polarographic analysis for determination of fenofibrate (FEN) in pure and pharmaceutical dosage forms using dropping mercury electrode (DME) was applied.</p><p><strong>Methods: </strong>The method involves the electrochemical reduction of fenofibrate at DME by differential pulse polarographic analysis (DPPA). Different buffer solutions were used over a wide pH range (1.0–10.0). The best definition of the analytical signals was found in lithium perchlorate trihydrate buffer at pH 6.0 containing 24% (v/v) acetonitrile at-994 to-1025mV (versus Ag/AgCl).</p><p><strong>Results: </strong>Under optimized conditions the peak current (I<sub>p</sub>) is linear over the range 0.0361-3.608 μg/ml. The DPPA was used successfully for the determination of FEN in pure and pharmaceutical dosage forms. The relative standard deviation did not exceed 2.1% for the concentration of FEN 0.0361 μg/ml. Regression analysis showed a good correlation coefficient (R<sup>2</sup>= 0.9994) between Ip and concentration at the mentioned range. The limit of detection (LOD) and the limit of quantification (LOQ) was to be 0.0025 and 0.0076 μg/ml, respectively. The proposed method was validated for linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ), robustness and specificity with an average recovery of 99.8-100.6%.</p><p><strong>Conclusion: </strong>The developed method is applicable for the determination of FEN in pure and different dosage forms with the assay of marketed formulations 99.8-104.0% and the results are in good agreement with those obtained by square-wave voltammetry (SWV) reference method.</p><p><strong>Keywords: </strong>Differential pulse polarographic analysis, Fenofibrate, Pharmaceutical formulations</p>


1983 ◽  
Vol 48 (10) ◽  
pp. 2903-2908 ◽  
Author(s):  
Viktor Vrabec ◽  
Oldřich Vrána ◽  
Vladimír Kleinwächter

A method is described for determining total platinum content in urine, blood plasma and tissues of patients or experimental animals receiving cis-dichlorodiamineplatinum(II). The method is based on drying and combustion of the biological material in a muffle furnace. The product of the combustion is dissolved successively in aqua regia, hydrochloric acid and ethylenediamine. The resulting platinum-ethylenediamine complex yields a catalytic current at a dropping mercury electrode allowing to determine platinum by differential pulse polarography. Platinum levels of c. 50-1 000 ng per ml of the biological fluid or per 0.5 g of a tissue can readily be analyzed with a linear calibration.


1984 ◽  
Vol 49 (10) ◽  
pp. 2320-2331 ◽  
Author(s):  
Miroslav Březina ◽  
Martin Wedell

Reduction of oxygen and oxidation of hydrogen peroxide at the dropping mercury electrode are electrochemical processes strongly influenced both by the pH value and the anions in solution. With decreasing pH, both processes become irreversible, especially in the presence of anions with a negative φ2 potential of the diffusion part of the double layer. In the case of irreversible oxygen reduction, the concept that the rate-controlling step of the electrode process is the acceptance of the first electron with the formation of the superoxide anion, O2-, was substantiated. Oxidation of hydrogen peroxide becomes irreversible at a lower pH value than the reduction of oxygen. The slowest, i.e. rate-controlling step of the electrode process in borate buffers at pH 9-10 is the transfer of the second electron, i.e. oxidation of superoxide to oxygen.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


1996 ◽  
Vol 61 (3) ◽  
pp. 333-341
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř ◽  
Josino C. Moreira ◽  
Jiří Zima

The polarographic behaviour was studied for 6-β-D-glucopyranosyloxy-7-hydroxycoumarin, a natural compound serving as an optical whitening agent. The substance can be quantitated by tast polarography, differential pulse polarography using a conventional dropping mercury electrode, and differential pulse polarography using a static mercury drop electrode over the regions of 20-1 000, 2-1 000, and 0.2-1 000 μmol l-1, respectively. The methods developed for the quantitation of the compound were applied to its direct determination in a raw product.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1571-1587 ◽  
Author(s):  
Karel Čížek ◽  
Jiří Barek ◽  
Jiří Zima

The polarographic behavior of 3-nitrofluoranthene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV), both at a hanging mercury drop electrode. Optimum conditions have been found for its determination by the given methods in the concentration ranges of 1 × 10-6-1 × 10-4 mol l-1 (DCTP), 1 × 10-7-1 × 10-4 mol l-1 (DPP), 1 × 10-8-1 × 10-6 mol l-1 (DPV) and 1 × 10-9-1 × 10-7 mol l-1 (AdSV), respectively. Practical applicability of these techniques was demonstrated on the determination of 3-nitrofluoranthene in drinking and river water after its preliminary separation and preconcentration using liquid-liquid and solid phase extraction with the limits of determination 4 × 10-10 mol l-1 (drinking water) and 2 × 10-9 mol l-1 (river water).


1965 ◽  
Vol 20 (4) ◽  
pp. 774-778 ◽  
Author(s):  
Domenic A. Maio ◽  
James R. Neville

A polarographic method was described in an earlier report which permits the accurate, rapid determination of oxygen content in small samples of blood. As with the Van Slyke technic, total oxygen capacity was formerly estimated by a separate determination of the oxygen content after complete saturation with oxygen of another portion of the blood sample. Further experience with the polarographic method has revealed the feasibility of estimating both content and capacity in a single blood sample. The capacity estimate is made possible by the polarographic observation of the quantity of potassium ferricyanide required to convert ferrohemoglobin to ferrihemoglobin. The measurement of oxygen content is performed, as previously described, by the polarographically determined increase in physically dissolved oxygen caused by the release of bound oxygen. By this means, one avoids sampling and random errors inherent in the use of two separate determinations. The method requires only a brief time for performance and ordinary technical proficiency. It is also simple in application. polarographic dropping mercury electrode; oxygen tension; digitonin; potassium ferricyanide; ferrohemoglobin; ferrihemoglobin Submitted on June 24, 1964


2011 ◽  
Vol 76 (12) ◽  
pp. 1991-2004 ◽  
Author(s):  
Vlastimil Vyskočil ◽  
Ivan Jiránek ◽  
Aleš Daňhel ◽  
Jiří Zima ◽  
Jiří Barek ◽  
...  

Electrochemical behavior of genotoxic nitro derivatives of quinoline, namely 5-nitroquinoline (5-NQ), 6-nitroquinoline (6-NQ) and 8-nitroquinoline (8-NQ), was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a classical dropping mercury electrode (DME), and by differential pulse voltammetry (DPV) and adsorptive stripping differential pulse voltammetry (AdSDPV), both at a miniaturized hanging mercury drop minielectrode (HMDmE), in buffered aqueous (for 5-NQ) or aqueous-methanolic (for 6-NQ and 8-NQ) solutions. Optimum conditions were found for the determination of 5-NQ, 6-NQ and 8-NQ by DCTP at DME (with limits of quantification, LQ ≈ 9 × 10–7, 3 × 10–7 and 2 × 10–6 mol l–1, respectively), by DPP at DME (LQ ≈ 1 × 10–8, 9 × 10–8 and 1 × 10–7 mol l–1, respectively), by DPV at HMDmE (LQ ≈ 2 × 10–8, 1 × 10–7 and 1 × 10–7 mol l–1, respectively), and by AdSDPV at HMDmE (LQ ≈ 1 × 10–8 mol l–1 for 8-NQ; an attempt at increasing the sensitivity using AdSDPV at HMDmE was not successful for 5-NQ and 6-NQ). Practical applicability of the developed methods was verified on the direct determination of the studied compounds in model samples of drinking and river water in submicromolar concentrations and on the determination in model samples of drinking and river water using preliminary separation and preconcentration by solid phase extraction (SPE) in nanomolar concentrations.


1978 ◽  
Vol 56 (5) ◽  
pp. 703-708 ◽  
Author(s):  
Jacques Devynck ◽  
Bernard Tremillon ◽  
Hugues Menard ◽  
Germain Comarmond

The electrochemical behaviour of Sb(III) and Sb(V) in water–HF mixtures (2.5 to 50% HF) and in anhydrous HF is described. A Teflon capillary dropping mercury electrode is proposed for polarographie investigations in these fluorinated media. It is shown, by classical or puise polarography, that Sb(III) can be reduced to Sb(0), as in acidic non-fluorinated media. The electrochemical reaction becomes reversible by addition of Cl−, Br− or I−. Sb(V) is not electroactive in the various HF-media, except when it is introduced as the SbCl5. In this case, the two polarographie waves of Sb(V) disappear with time because of SbF6− formation. Analytical applications to the determination of Sb(III) in water–HF and in anhydrous HF are discussed.


Sign in / Sign up

Export Citation Format

Share Document