scholarly journals DEVELOPMENT AND VALIDATION OF DIFFERENTIAL PULSE POLAROGRAPHIC ANALYSIS OF FENOFIBRATE IN PURE AND PHARMACEUTICAL DOSAGE FORMS USING DROPPING MERCURY ELECTRODE

Author(s):  
Abdul Aziz Ramadan ◽  
Hasna Mandil ◽  
Reham Abu-saleh

<p><strong>Objective: </strong>An easy, fast, accurate and sensitive differential pulse polarographic analysis for determination of fenofibrate (FEN) in pure and pharmaceutical dosage forms using dropping mercury electrode (DME) was applied.</p><p><strong>Methods: </strong>The method involves the electrochemical reduction of fenofibrate at DME by differential pulse polarographic analysis (DPPA). Different buffer solutions were used over a wide pH range (1.0–10.0). The best definition of the analytical signals was found in lithium perchlorate trihydrate buffer at pH 6.0 containing 24% (v/v) acetonitrile at-994 to-1025mV (versus Ag/AgCl).</p><p><strong>Results: </strong>Under optimized conditions the peak current (I<sub>p</sub>) is linear over the range 0.0361-3.608 μg/ml. The DPPA was used successfully for the determination of FEN in pure and pharmaceutical dosage forms. The relative standard deviation did not exceed 2.1% for the concentration of FEN 0.0361 μg/ml. Regression analysis showed a good correlation coefficient (R<sup>2</sup>= 0.9994) between Ip and concentration at the mentioned range. The limit of detection (LOD) and the limit of quantification (LOQ) was to be 0.0025 and 0.0076 μg/ml, respectively. The proposed method was validated for linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ), robustness and specificity with an average recovery of 99.8-100.6%.</p><p><strong>Conclusion: </strong>The developed method is applicable for the determination of FEN in pure and different dosage forms with the assay of marketed formulations 99.8-104.0% and the results are in good agreement with those obtained by square-wave voltammetry (SWV) reference method.</p><p><strong>Keywords: </strong>Differential pulse polarographic analysis, Fenofibrate, Pharmaceutical formulations</p>

2018 ◽  
Vol 15 (2) ◽  
pp. 6235-6247
Author(s):  
Abdul Aziz Ramadan ◽  
Hasna Mandil ◽  
Reham Abu Saleh

Differential pulse polarographic analysis (DPPA) by using static mercury drop electrode (SMDE) for quantification of flucloxacillin (FLUX) in pure and pharmaceutical dosage forms was studied. The optimum conditions for the polarographic signal were determined and a study was made of the different parameters affecting the electrochemical process. The best definition of the analytical signals was found in Britton–Robinson buffer (0.06 M) at pH 4.0 . Under the optimum conditions, liner calibration graph, Ip=f(CFLUX) was obtained in the concentration ranges of 0.1 mM (0.0494 ?g.mL-1) to 26 mM (12.8414 ?g.mL-1) at -940 to -1000 mV (versus Ag/AgCl) with relative standard deviations (RSD) did not exceed 2.4% for the concentrations of FLUX (0.0494 ?g.mL-1). Regression analysis showed a good correlation coefficient (R2=9998) between Ip and concentration over the mentioned range. The limit of detection (LOD) and the limit of quantification (LOQ) were to be 0.0040 and 0.0120 ?g.mL-1, respectively. The proposed method was validated for linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ), robustness and specificity. The developed method is applicable for the determination of FLUX in pure and different dosage forms in presence a same amount of amoxicillin (AMOX) with average recovery of 99.4 to 102.2 % and the results are in good agreement with those obtained by the HPLC reference method.  


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


1994 ◽  
Vol 77 (3) ◽  
pp. 768-773 ◽  
Author(s):  
Juan A Squella ◽  
Juan C Sturm ◽  
Alejandro Alvarez-Lueje ◽  
Luis J Núñez-Vergara

Abstract Electrochemical reduction of zopiclone at different pHs and concentrations was studied by polarography and cyclic voltametry. Both techniques revealed a reduction process with weak adsorption of both zopiclone and its reduction derivative. Zopiclone exhibited 2 differential pulse polarographic peaks at the dropping mercury electrode. The first peak was used to develop a differential pulse polarographic analytical procedure for determining the drug in pharmaceutical dosage forms. Reproducibility and recovery coefficients of variation were 1.6 and 2.2%, respectively. Analysis of commercial zopiclone tablets showed uniformity in zopiclone content. The method is simple and rapid because separation of excipients is unnecessary.


2010 ◽  
Vol 7 (2) ◽  
pp. 395-402
Author(s):  
Padmarajaiah Nagaraja ◽  
Ashwinee Kumar Shrestha

A spectrophotometric method has been proposed for the determination of four phenolic drugs; salbutamol, ritodrine, amoxicillin and isoxsuprine. The method is based on the oxidation of 2, 4- dinitrophenyl-hydrazine and coupling of the oxidized product with drugs to give intensely colored chromogen. Under the proposed optimum condition, beer’s law was obeyed in the concentration range of 2.5-17, 2-29, 4-33 and 5-30 μg/mL for salbutamol, ritodrine, amoxicillin and isoxsuprine respectively. The limit of detection (LOD) and limit of quantification (LOQ) were 0.2, 0.83, 0.09, 0.84 μg/mL and 0.66, 2.79, 0.3 and 2.81 μg/mL in the same order. No interference was observed from common pharmaceutical adjuvants. The ringbom plots and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical dosage forms, which was compared statistically with reference methods by means oft- test andF- test and were found not to differ significantly at 95% confidence level. The procedure is characterized by its simplicity with accuracy and precision.


1983 ◽  
Vol 48 (10) ◽  
pp. 2903-2908 ◽  
Author(s):  
Viktor Vrabec ◽  
Oldřich Vrána ◽  
Vladimír Kleinwächter

A method is described for determining total platinum content in urine, blood plasma and tissues of patients or experimental animals receiving cis-dichlorodiamineplatinum(II). The method is based on drying and combustion of the biological material in a muffle furnace. The product of the combustion is dissolved successively in aqua regia, hydrochloric acid and ethylenediamine. The resulting platinum-ethylenediamine complex yields a catalytic current at a dropping mercury electrode allowing to determine platinum by differential pulse polarography. Platinum levels of c. 50-1 000 ng per ml of the biological fluid or per 0.5 g of a tissue can readily be analyzed with a linear calibration.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


Sign in / Sign up

Export Citation Format

Share Document