A new molecular technique for identifying field collections of zebra mussel (Dreissena polymorpha) and quagga mussel (Dreissena bugensis) veliger larvae applied to eastern Lake Erie, Lake Ontario, and Lake Simcoe

1998 ◽  
Vol 76 (1) ◽  
pp. 194-198 ◽  
Author(s):  
W. Trevor Claxton ◽  
Elizabeth G. Boulding
1998 ◽  
Vol 76 (1) ◽  
pp. 194-198 ◽  
Author(s):  
W Trevor Claxton ◽  
Elizabeth G Boulding

The veliger larvae of two introduced species of bivalves, the zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena bugensis), are difficult or impossible to tell apart morphologically. We have developed specific dreissenid polymerase chain reaction (PCR) primers from dreissenid bivalve DNA sequences, which amplify a region of the cytochrome c oxidase subunit I mitochondrial gene. Non-dreissenid mtDNA, as found in field-collected veliger samples, was not amplified by these new PCR primers. The DNA sequence of this region distinguishes zebra mussel from quagga mussel larvae. Restriction digests of this region using the enzyme ScrFI showed no intraspecies variation in restriction pattern. We used this technique to distinguish the species of veliger larvae collected in eastern Lake Erie, Lake Ontario, and Lake Simcoe. In our limited study, no quagga mussel larvae were found in Lake Simcoe, suggesting that this mussel species has not yet spread to the Kawartha Lake system. No zebra mussel larvae were found in either Lake Erie or Lake Ontario. These preliminary results add to the growing evidence that the quagga mussel is replacing the zebra mussel in parts of the lower Great Lakes.


1993 ◽  
Vol 50 (11) ◽  
pp. 2305-2314 ◽  
Author(s):  
Edward L. Mills ◽  
Ron M. Dermott ◽  
Edward F. Roseman ◽  
Donna Dustin ◽  
Eric Mellina ◽  
...  

An invasive dreissenid mussel given the working name of "quagga" has a present (spring 1993) distribution in the Laurentian Great Lakes from the western basin of Lake Erie to Quebec City. In Lake Erie, quaggas were collected as early as 1989 and now are most common in the eastern basin. In Lakes Erie and Ontario, proportions of quaggas increased with depth and decreasing water temperature. In the eastern basin of Lake Erie, quaggas outnumbered zebra mussel (Dreissena polymorpha) by 14 to 1 in deeper waters (>20 m). In Lake Ontario, quaggas were observed at depths as great as 130 m, and both quagga and zebra mussel were found to survive at depths (>50 m) where temperatures rarely exceed 5 °C. Quaggas were sparse or absent along inland waterways and lakes of New York State. Mean shell size of quagga mussel was larger than that of zebra mussel at sites in the Niagara River, Lake Ontario, and the St. Lawrence River. The largest quaggas (38 mm) were observed in the St. Lawrence River at Cape Vincent.


1995 ◽  
Vol 73 (2) ◽  
pp. 400-403 ◽  
Author(s):  
Adrian P. Spidle ◽  
Edward L. Mills ◽  
Bernie May

The coexistence of two dreissenids, the quagga mussel (Dreissena bugensis) and the zebra mussel (D. polymorpha), in a new environment raises the possibility of natural hybridization and possible introgression. Animals of both species were collected in areas where they occur sympatrically (25–39% were quagga mussels) and screened at two protein-coding loci believed to differentiate between the two species. The occurrence of alleles diagnostic for both species in an individual would demonstrate hybridization between the species. No hybrid individuals were observed in a survey of 750 animals from four sites in Lake Ontario and one site in Lake Erie. Successful hybridization between these two genetically disparate species seems unlikely in the Great Lakes.


1993 ◽  
Vol 50 (11) ◽  
pp. 2298-2304 ◽  
Author(s):  
R. Dermott ◽  
M. Munawar

Large populations of the exotic rounded (noncarinate) shelled mussel of the genus Dreissena were found to exist on soft sediments collected throughout the central and eastern basins of Lake Erie during July and August 1992. Two different phenotypes were present on fine sediments (<150 μm) in the eastern basin. An elongated white morph was common on the profundal sediments beyond 40 m depth, while the "quagga" mussel was common on sand and sandy silt at depths between 10 and 30 m. Together with the carinated zebra mussel Dreissena polymorpha, which is very abundant on hard substrates in the sublittoral region, at least 80% of Lake Erie's bottom sediments have been invaded by Dreissena. Only that region of the central basin (near Cleveland) which undergoes periodic summer anoxia was not inhabited by this genus.


1996 ◽  
Vol 82 (1) ◽  
pp. 1-7 ◽  
Author(s):  
David Bruce Conn ◽  
Anthony Ricciardi ◽  
Mohan N. Babapulle ◽  
Kristine A. Klein ◽  
David A. Rosen

2018 ◽  
Vol 238 ◽  
pp. 706-716 ◽  
Author(s):  
Lauris Evariste ◽  
Elise David ◽  
Pierre-Luc Cloutier ◽  
Pauline Brousseau ◽  
Michel Auffret ◽  
...  

1995 ◽  
Vol 52 (10) ◽  
pp. 2108-2119 ◽  
Author(s):  
Adrian P. Spidle ◽  
Bernie May ◽  
Edward L. Mills

The quagga mussel (Dreissena bugensis) and the zebra mussel (Dreissena polymorpha) were exposed to varied levels of salinity and temperature in the laboratory to compare the tolerance of each species to environmental stress. The zebra mussel could tolerate 30 °C for extended periods and higher temperatures (< 39 °C) for a period of hours depending on the acclimation temperature and the rate of temperature change. The upper thermal limit of the quagga mussel may be as low as 25 °C. Mussels of both species acclimated to 5 °C were less able to survive at high temperatures (30–39 °C) than mussels acclimated to 15 or 20 °C. The reduced upper temperature limit of the quagga mussel implies that it will not be able to expand as far south in North America as has the zebra mussel. Both D. bugensis and D. polymorpha were exposed to three concentrations of NaCl (5, 10, and 20‰) to test salinity tolerance. No individuals of either species survived beyond 18 days in salinities of 5‰ or higher. No interspecific difference occurred in salinity-induced mortality rate.


1998 ◽  
Vol 55 (1) ◽  
pp. 220-229 ◽  
Author(s):  
James H Thorp ◽  
James E Alexander, Jr. ◽  
Bonny L Bukaveckas ◽  
Gary A Cobbs ◽  
Kurt L Bresko

To predict possible effects of global climatic change (via changes in ambient water temperatures and suspended sediments) on two exotic bivalves (zebra mussel, Dreissena polymorpha, and quagga mussel, Dreissena bugensis), we evaluated survival and growth at three temperatures (ambient, ambient + 2°C, and ambient + 4°C) and two turbidities (ambient and twice ambient) in outdoor tanks for approximately 3 months during both warm and cool seasons. We compared responses of zebra and quagga mussels from southwestern Lake Erie and zebra mussel from the Ohio River at Louisville, Kentucky. Experimental increases in temperature significantly enhanced growth rates in fall - early winter but not during summer - early fall. Elevated temperatures increased mortality in the warm season but not in the cool season. Zebra mussel survived better (especially the Ohio River population) than did quagga mussel at high temperatures. Inorganic turbidity had few detectable effects; relationships, where significant, varied with temperature and species. Based on these experiments and related laboratory studies, we predict that populations of Dreissena in the Ohio River and farther south will suffer overall if water temperatures increase. In contrast, more northern populations of Dreissena will probably benefit from predicted climatic change and may extend their range to higher latitudes and altitudes.


Sign in / Sign up

Export Citation Format

Share Document