New insights into the structure of the Sudbury Igneous Complex from downhole seismic studies

2002 ◽  
Vol 39 (6) ◽  
pp. 943-951 ◽  
Author(s):  
David Snyder ◽  
Gervais Perron ◽  
Karen Pflug ◽  
Kevin Stevens

New vertical seismic profiles from the northwest margin of the Sudbury impact structure provide details of structural geometries within the lower impact melt sheet (usually called the Sudbury Igneous Complex) and the sublayer norite layer. Vertical seismic profile sections and common depth point transformation images display several continuous reflections that correlate with faults and stratigraphic boundaries logged from drill cores. Of four possible mechanisms that explain repeated rock units, late-stage flow or normal faulting that occurred within the last layers to cool and crystallize might best explain the observations, especially the most prominent reflectors observed in the seismic data. These results reaffirm previously proposed two-stage cooling and deformation models for the impact melt sheet.

2020 ◽  
Author(s):  
Alexander Kawohl ◽  
Hartwig E. Frimmel ◽  
Wesley E. Whymark ◽  
Andrejs Bite

<p>The 1.85 Ga Sudbury Igneous Complex, Canada, is the remnant of a ~3 km thick impact-generated crustal melt sheet, caused by a 10-15 km large chondritic asteroid or comet that had left behind an impact structure of ~200 km prior to tectonic deformation und subsequent erosion. However, less is known about how deep the impactor penetrated the continental crust and where the source of the impact melt was. Mixing models including radioisotopes and trace elements on locally exposed country rocks have been used to evaluate their relative contribution to the impact melt. Based on this, Darling et al. (2010) have argued for shallow melting of the upper crust (UCC) only, either due to an oblique impact and/or a low-density bolide (comet). In contrast, the abundance of siderophile elements in impact melt-rocks was taken as evidence of a lower crustal source (Mungall et al. 2004), i.e. overlying rocks of the middle and upper crust must have been removed during the crater excavation stage. U-Pb age data on zircon xenocrysts also point to the involvement of rock types not exposed on surface (Petrus et al. 2016) in agreement with theoretical simulations, which have predicted a >20 km deep but unstable transient cavity (Ivanov & Deutsch 1999).</p><p>Large-scale (10s of km) and well-exposed impact melt dykes are a unique feature of Sudbury. The dykes are of granodioritic/quartz dioritic composition and are interpreted as clast-laden melt injections into the basement instantaneously after the impact (Pilles et al. 2018). Their vitric margins and distal extremities should therefore approximate the undifferentiated bulk composition of the Sudbury Igneous Complex prior to sulfide saturation. A compilation of published and new geochemical data of these dykes reveal a remarkably strong affinity (r<sup>2</sup> >0.989) to the average middle continental crust (MCC) as given by Rudnick & Gao (2014), especially in terms of major elements and fluid-immobile transition metals (Th, Zr, Hf, Nb, Ta, Ti, Sc, REE). The dykes are, however, significantly enriched in Ni, Cu and Cr, and to a lesser extent in V, Co and P relative to the typical UCC and MCC. A systematic loss of volatiles (Tl, Cd, Sn, Zn, Pb, Ag, Cs, Rb, Na, K, Ga, As) compared to either crustal model is not evident. These new observations favour a scenario in which the impactor and supracrustal rocks in the target area became vaporized and ejected. Shock melting affected predominantly the middle crust of the Canadian Shield. We also propose that the rocks that contributed to the impact melt were, on average, more mafic than the typical UCC and MCC. This is consistent with the report of exotic mafic-ultramafic xenoliths within the Sudbury Igneous Complex (Wang et al. 2018) and its anomalously high PGE concentrations (Mungall et al. 2004). (Ultra-)mafic rocks hidden at mid-crustal depth were a likely source of Ni-Cu-PGE-Co and gave rise to world class ore deposits presently mined at Sudbury. Such (ultra-)mafic intrabasement body might also explain the 1200 km<sup>2</sup> Temagami magnetic anomaly in the eastern vicinity of the Sudbury Complex.</p>


2020 ◽  
Vol 61 (6) ◽  
Author(s):  
Yujian Wang ◽  
C Michael Lesher ◽  
Peter C Lightfoot ◽  
Edward F Pattison ◽  
J Paul Golightly

Abstract The c. 1·85 Ga Sudbury Igneous Complex (SIC) is the igneous remnant of one of the oldest, largest and best-preserved impact structures on Earth and contains some of the world’s largest magmatic Ni–Cu–PGE sulfide deposits. Most of the mineralization occurs in Sublayer, Footwall Breccia and inclusion-bearing quartz diorite (IQD), all of which contain significant (Sublayer and IQD) to minor (Footwall Breccia) amounts of olivine-bearing mafic–ultramafic inclusions. These inclusions have only rare equivalents in the country rocks and are closely associated with the Ni–Cu–PGE sulfide mineralization. They can be divided into three groups on the basis of petrography and geochemical characteristics. Group I (n = 47) includes igneous-textured olivine melanorite and olivine melagabbronorite inclusions in the Whistle and Levack embayments on the North Range with Zr/Y, Zr/Nb, Nb/U and Zr/Hf similar to igneous-textured Sublayer matrix. Group I inclusions are interpreted to be anteliths that crystallized from a mixture of SIC impact melt and a more mafic melt, probably derived by melting of ultramafic footwall rocks. Group II includes Group IIA (n = 17) shock metamorphosed wehrlite and olivine clinopyroxenite inclusions in the Levack embayment and Group IIB (n = 2) shock metamorphosed olivine melanorite inclusions in the Foy Offset on the North Range. Group II inclusions have similar trace element patterns [e.g. negative Th–U, Nb–Ta–(Ti), Sr and Zr–Hf anomalies] and overlapping Nb/U to a layered mafic–ultramafic intrusion in the footwall of the Levack and Fraser deposits, which together with their limited distribution suggests that Group II inclusions are locally-derived xenoliths. Group III (n = 21) includes phlogopite lherzolite and feldspar lherzolite inclusions with igneous, recrystallized and shock-metamorphic textures in the Trill, Levack and Bowell embayments, and the Foy Offset dike on the North Range. They have no equivalents in the exposed country rocks. The calculated parental magma is similar to continental arc basalt formed by approximately 5% partial melting of garnet peridotite. Ol–Cpx–Pl thermobarometry of several Group III inclusions indicate equilibration at 900–1120 ºC and 210 ± 166 MPa to 300 ± 178 MPa, suggesting crystallization in the upper-middle crust (7·7 ± 6·6 to 10·9 ± 6·5 km), prior to being incorporated into the lower parts of the impact melt sheet during impact excavation. The exotic xenoliths provide information about the depth of impact and composition of upper-middle crust in the Sudbury region at 1850 Ma, the local xenoliths provide information about the thermomechanical erosion process that followed generation of the impact melt, the anteliths provide information about the early crystallization history of the SIC, and all of the inclusions provide constraints on the genesis of Sublayer, IQD, footwall breccia, and associated Ni–Cu–PGE mineralization.


Geophysics ◽  
1984 ◽  
Vol 49 (3) ◽  
pp. 250-264 ◽  
Author(s):  
L. R. Lines ◽  
A. Bourgeois ◽  
J. D. Covey

Traveltimes from an offset vertical seismic profile (VSP) are used to estimate subsurface two‐dimensional dip by applying an iterative least‐squares inverse method. Tests on synthetic data demonstrate that inversion techniques are capable of estimating dips in the vicinity of a wellbore by using the traveltimes of the direct arrivals and the primary reflections. The inversion method involves a “layer stripping” approach in which the dips of the shallow layers are estimated before proceeding to estimate deeper dips. Examples demonstrate that the primary reflections become essential whenever the ratio of source offset to layer depth becomes small. Traveltime inversion also requires careful estimation of layer velocities and proper statics corrections. Aside from these difficulties and the ubiquitous nonuniqueness problem, the VSP traveltime inversion was able to produce a valid earth model for tests on a real data case.


Geophysics ◽  
2001 ◽  
Vol 66 (2) ◽  
pp. 582-597 ◽  
Author(s):  
Donald F. Winterstein ◽  
Gopa S. De ◽  
Mark A. Meadows

Since 1986, when industry scientists first publicly showed data supporting the presence of azimuthal anisotropy in sedimentary rock, we have studied vertical shear‐wave (S-wave) birefringence in 23 different wells in western North America. The data were from nine‐component vertical seismic profiles (VSPs) supplemented in recent years with data from wireline crossed‐dipole logs. This paper summarizes our results, including birefringence results in tabular form for 54 depth intervals in 19 of those 23 wells. In the Appendix we present our conclusions about how to record VSP data optimally for study of vertical birefringence. We arrived at four principal conclusions about vertical S-wave birefringence. First, birefringence was common but not universal. Second, birefringence ranged from 0–21%, but values larger than 4% occurred only in shallow formations (<1200 m) within 40 km of California’s San Andreas fault. Third, at large scales birefringence tended to be blocky. That is, both the birefringence magnitude and the S-wave polarization azimuth were often consistent over depth intervals of several tens to hundreds of meters but then changed abruptly, sometimes by large amounts. Birefringence in some instances diminished with depth and in others increased with depth, but in almost every case a layer near the surface was more birefringent than the layer immediately below it. Fourth, observed birefringence patterns generally do not encourage use of multicomponent surface reflection seismic data for finding fractured hydrocarbon reservoirs, but they do encourage use of crossed‐dipole logs to examine them. That is, most reservoirs were birefringent, but none we studied showed increased birefringence confined to the reservoir.


1989 ◽  
Vol 20 (2) ◽  
pp. 309
Author(s):  
G.M. King ◽  
S. Endersby

BHP Petroleum has acquired seven Offset Vertical Seismic Profiles (OVSP's) since commencing exploration in the Timor Sea and all were acquired with the aim of defining more accurately the position of a bounding fault close to the well. OVSP's were acquired at Montara-1 and Bilyara-1 to assist in planning proposed sidetracks. In both of these cases there were significant differences between the fault location determined from the OVSP and the fault position interpreted on the seismic data. The discrepancies were in excess of 100 m in both cases and show that migrated 2D data do not have the accuracy that we sometimes assume. A comparison of two OVSP images using different receiver spacings (10 m and 20 m) showed that there was a significant improvement in resolution and clarity of the image when using the 10 m spacing. The OVSP's acquired at Montara-1 and Bilyara-1 provided a more accurate image of the subsurface close to the well bore and therefore were useful in planning options such as sidetracking the wells.


Geophysics ◽  
1994 ◽  
Vol 59 (10) ◽  
pp. 1500-1511 ◽  
Author(s):  
Jakob B. U. Haldorsen ◽  
Douglas E. Miller ◽  
John J. Walsh

We describe a technique for performing optimal, least‐squares deconvolution of vertical seismic profile (VSP) data. The method is a two‐step process that involves (1) estimating the source signature and (2) applying a least‐squares optimum deconvolution operator that minimizes the noise not coherent with the source signature estimate. The optimum inverse problem, formulated in the frequency domain, gives as a solution an operator that can be interpreted as a simple inverse to the estimated aligned signature multiplied by semblance across the array. An application to a zero‐offset VSP acquired with a dynamite source shows the effectiveness of the operator in attaining the two conflicting goals of adaptively spiking the effective source signature and minimizing the noise. Signature design for seismic surveys could benefit from observing that the optimum deconvolution operator gives a flat signal spectrum if and only if the seismic source has the same amplitude spectrum as the noise.


Sign in / Sign up

Export Citation Format

Share Document