Geochemistry of North Shore Hypabyssal dikes and sills in the Midcontinent Rift of Minnesota: an example — the 47th Avenue sill

2004 ◽  
Vol 41 (7) ◽  
pp. 829-842 ◽  
Author(s):  
Karl E Seifert ◽  
James F Olmsted

This study presents geochemical data for several of the numerous small to large dikes and sills, including the 47th Avenue sill, exposed along the shore of Lake Superior in and north of Duluth, Minnesota. These intrusions are late magmatic features of the Proterozoic Midcontinent Rift System and together form the North Shore Hypabyssal Group. The dikes are geochemically distinct from the sills, and, when the two are exposed together, the younger dike intrudes the older sill. Dikes are primitive with Mg# up to 68, have positive εNd values, and are oriented approximately north–south with steep westerly or near vertical dips. The older sills are more evolved, usually have εNd values near or below 0, and have the same gentle easterly dip as the thick sequence of North Shore Volcanic Group flows they intrude. Dike compositions correlate best with a mixture of widespread basalt compositions types 4 and 5, with primitive geochemistry and positive εNd values, whereas sill compositions are similar to widespread basalt composition type 4 typical of most North Shore Volcanic Group flows. The 47th Avenue sill in Duluth is an evolved single intrusion North Shore Hypabyssal Group diabase sill with trough banding, sharp lower and upper contacts, and a spectacular fractured and undulating roof zone containing blocks of the overlying ferroandesite flow.

1997 ◽  
Vol 34 (4) ◽  
pp. 476-488 ◽  
Author(s):  
D. W. Davis ◽  
J. C. Green

Volcanism in the Midcontinent rift system lasted between 1108 and 1086 Ma. Rates of flood-basalt eruption and subsidence in the western Lake Superior region appear to have been greatest at the beginning of recorded activity (estimated 5 km/Ma subsidence rate at 1108 Ma) and rapidly waned over a period of 1–3 Ma during a magnetically reversed period. The age of the paleomagnetic polarity reversal is now constrained to be between 1105 ± 2 and 1102 ± 2 Ma. A resurgence of intense volcanism began at 1100 ± 2 Ma in the North Shore Volcanic Group and lasted until 1097 ± 2 Ma. This group contains a ca. 7 Ma time gap between magnetically reversed and normal volcanic sequences. A similar disconformity appears to exist in the upper part of the Powder Mill Group. The average subsidence rate during this period was approximately 3.7 km/Ma. Latitude variations measured from paleomagnetism on dated sequences indicate that the North American plate was drifting at a minimum rate of 22 cm/year during the early history of the Midcontinent rift. An abrupt slowdown to approximately 8 cm/year occurred at ca. 1095 Ma. These data support a mantle-plume origin for Midcontinent rift volcanism, with the plume head attached to and drifting with the continental lithosphere. Resurgence of flood-basalt magmatism at 1100 Ma may have been caused by extension of the superheated lithosphere following continental collision within the Grenville Orogen to the east.


1994 ◽  
Vol 31 (4) ◽  
pp. 709-720 ◽  
Author(s):  
Donald C. Adams ◽  
G. Randy Keller

The Midcontinent Rift System forms one of the most prominent gravity features in North America. The recognized geophysical anomaly extends in an arc from southern Oklahoma to Lake Superior and then into southern Michigan. The Midcontinent Rift System was active between 1185–1010 Ma, as indicated in the Lake Superior region by age determinations on intrusive igneous rocks. We suggest that the period of formation of the Midcontinent Rift was also a time of extensive igneous activity in Texas and New Mexico. This activity is represented by intrusions beneath the Central basin platform (Texas and New Mexico), intrusions which crop out at the Pajarito Mountain in the Sacramento Mountains (New Mexico), a basaltic debris flow in the Franklin Mountains (Texas), basalt flows at Van Horn (Texas), and the Crosbyton geophysical anomaly (east of Lubbock, Texas). These bodies and other bodies located by geophysical anomalies and wells drilled into mafic Precambrian rocks may be related to the Midcontinent Rift System. Alternatively this magmatism could be related to Grenville age tectonics in Texas. The mafic igneous rocks in this area form a 530 km diameter Middle Proterozoic igneous province, which formed between 1070 and 1220 Ma. Comparison of the Midcontinent Rift System and its extensions proposed here with the Mesozoic and Cenozoic African rift systems indicates that these features are of comparable scale and complexity.


Sign in / Sign up

Export Citation Format

Share Document