basalt composition
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 0)



2021 ◽  
Author(s):  
Eva Santamaría-Pérez ◽  
Idael Francisco Blanco-Quintero ◽  
Agustín Martín-Algarra ◽  
David Benavente ◽  
Juan Carlos Cañaveras ◽  
...  

<p>Jurassic shallow-intrusive basic bodies within the Permian-Triassic Tethyan passive margin sedimentary sequences of the Lower Alpujarride units (Internal Betic Zone, Spain) locally show Alpine low-grade metamorphism in the greenschist and blueschist facies. A small sill-like mafic body near Redován town (Callosa Range) partially preserves igneous ophitic/subophitic texture and relics of augite, ferrohornblende-ferroedenite, kaersutite and K-feldspar (orthoclase). The metamorphic overprint corresponds to high-pressure and low-temperature mineral assemblages that comprise magnesioriebeckite, actinolite, albite, stilpnomelane, phengite and chlorite, with rutile, apatite and titanite as accessory minerals. Major and trace element geochemical data reveal igneous protoliths derived from magmas of alkaline basalt composition enriched in incompatible elements and E-MORB geochemical affinity. The intrusion emplacement occurred at shallow crustal levels in an extensional geodynamic setting (within-plate basalts) related to the breakoff of Pangea. Pressure-Temperature (P-T) conditions estimated by means of pseudosection calculations and the intersection of phengite (Si) and chlorite (Mg#) isopleths indicate a cold thermal gradient with calculated peak metamorphic conditions of ca. 8 kbar at 310 ºC. These conditions are consistent with metamorphism during burial down to ca. 24 km depth and a thermal gradient of ca. 13 ºC/km. Although the easternmost Lower Alpujarride units have been traditionally described as reaching only lower-greenschist to greenschist metamorphic peak conditions, the textures, mineral compositions and P-T conditions of the studied metagabbroic body reveal blueschist facies conditions that attest for a regional early stage (Eocene) of subduction of the lower Alpujarride units. This event predates the late Oligocene - early Miocene subduction-related metamorphism of the Intermediate and Upper Alpujarride units.</p>



2020 ◽  
Vol 105 (11) ◽  
pp. 1662-1671
Author(s):  
Anastassia Y. Borisova ◽  
Ilya N. Bindeman ◽  
Michael J. Toplis ◽  
Nail R. Zagrtdenov ◽  
Jérémy Guignard ◽  
...  

Abstract Zircon (ZrSiO4) is the most frequently used geochronometer of terrestrial and extraterrestrial processes. To shed light on question of zircon survival in the Earth's shallow asthenosphere, high-temperature experiments of zircon dissolution in natural mid-ocean ridge basaltic (MORB) and synthetic haplobasaltic melts have been performed at temperatures of 1250–1300 °C and pressures from 0.1 MPa to 0.7 GPa. Zirconium measurements were made in situ by electron probe microanalyses (EPMA) at high current. Taking into account secondary fluorescence effects in zircon-glass pairs during EPMA, a zirconium diffusion coefficient of 2.87E-08 cm2/s was determined at 1300 °C and 0.5 GPa. When applied to the question of zircon survival in asthenospheric melts of tholeiitic basalt composition, the data are used to infer that typical 100 mm zircon crystals dissolve rapidly (~10 h) and congruently upon reaction with basaltic melt at pressures of 0.2–0.7 GPa. We observed incongruent (to crystal ZrO2 and SiO2 in melt) dissolution of zircon in natural mid-ocean ridge the basaltic melt at low pressures <0.2 GPa and in the haplobasaltic melt at 0.7 GPa pressure. Our experimental data raise questions about the origin of zircon crystals in mafic and ultramafic rocks, in particular, in shallow oceanic asthenosphere and deep lithosphere, as well as the meaning of the zircon-based ages estimated from these minerals. The origin of zircon in shallow (ultra-) mafic chambers is likely related to the crystallization of intercumulus liquid. Large zircon megacrysts in kimberlites, peridotites, alkali basalts, and carbonatite magmas suggest fast transport and short interaction durations between zircon and melt. The origin of zircon megacrysts is likely related to metasomatic addition of Zr into the mantle as an episode of mantle melting should eliminate them on geologically short timescales.



Author(s):  
Altanbold Enkhbold ◽  
Ulambadrakh Khukhuudei ◽  
Sanchir Dorjgochoo ◽  
Byambabayar Ganbold

Cenozoic basalt, which is widespread in Mongolia, has been attracting the attention of Central Asian researchers since the beginning of the last century. This study identified the geomorphological shape of the Khorgo volcano. The main purpose of the study is to determine the origin and morphological form of Khorgo volcano, a key representative of Cenozoic volcanism. In general, there are several types of morphological forms associated with lava overflow, and it is important to determine which types are the most common and also to establish a link between them. Geomorphological studies in this area have not been conducted in Mongolia. Spatial improvement and morphometric methods satellite imagery had identified Khorgo volcanic faults.Khangai magmatism had thinned its crust to 45 km during the Tariat-Chuluut volcanic activity. It can be concluded that this was due to the thinning of the continental crust in the Khangai Mountains because of mantle plume. During this time, tectonic faults formed were formed, which had broken through the earth's crust. Part of this fault was formed in the vicinity of Khorgo Mountain from northwest to southeast, and lava flowed with the basic composition, which led to the formation of the current morphological form of Khorgo volcano. The lava flow was less than 45% silica and potassium-dominated, which blocked the Suman River valley and formed the present-day Terkhiin Tsagaan Lake. The morphometric analysis compared the morphology of a typical volcano, which showed that the mouth of the crater of the Khorgo volcano has a slope slanting about 45 degrees, it is about 100 meters in depth, with a diameter of about 500 meters. By comparing the basalt composition of the Khorgo volcano and its morphometric characteristics with other standard volcanoes, it has been determined that it is in the form of a lava dome.



2018 ◽  
Vol 35 (5) ◽  
pp. 438-446
Author(s):  
Bo Byloos ◽  
Harsh Maan ◽  
Rob Van Houdt ◽  
Nico Boon ◽  
Natalie Leys


EKSPLORIUM ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 71 ◽  
Author(s):  
Frederikus Dian Indrastomo ◽  
I Gde Sukadana ◽  
Asep Saepuloh ◽  
Agus Handoyo Harsolumakso ◽  
Dhatu Kamajati

Daerah Mamuju dan sekitarnya umumnya disusun oleh batuan gunung api. Batuan sedimen vulkanoklastik dan batugamping berada di atas batuan gunung api. Aktivitas gunung api membentuk beberapa morfologi unik seperti kawah, kubah lava, dan jalur hembusan piroklastika sebagai produknya. Produk tersebut diidentifikasi berdasarkan karakter bentuk-bentuk melingkar di citra Landsat-8. Hasil koreksi geometrik dan atmosferik, interpretasi visual pada citra Landsat-8 dilakukan untuk mengidentifikasi struktur, geomorfologi, dan kondisi geologi daerah tersebut. Struktur geologi regional menunjukkan kecenderungan arah tenggara – baratlaut yang mempengaruhi pembentukan gunung api Adang. Geomorfologi daerah tersebut diklasifikasikan menjadi 16 satuan geomorfologi berdasarkan aspek genetisnya, yaitu punggungan blok sesar Sumare, punggungan kuesta Mamuju, kawah erupsi Adang, kawah erupsi Labuhan Ranau, kawah erupsi Sumare, kerucut gunung api Ampalas, kubah lava Adang, bukit intrusi Labuhan Ranau, punggungan aliran piroklastik Adang, punggungan aliran piroklastik Sumare, perbukitan sisa gunung api Adang, perbukitan sisa gunung api Malunda, perbukitan sisa gunung api Talaya, perbukitan karst Tapalang, dan dataran aluvial Mamuju, dataran teras terumbu Karampuang. Berdasarkan hasil interpretasi citra Landsat-8 dan konfirmasi lapangan, geologi daerah Mamuju dibagi menjadi batuan gunung api dan batuan sedimen. Batuan gunung api terbagi menjadi dua kelompok, yaitu Kompleks Talaya dan Kompleks Mamuju. Kompleks Talaya terdiri atas batuan gunung api Mambi, Malunda, dan Kalukku berkomposisi andesit, sementara Kompleks Mamuju terdiri atas batuan gunung api Botteng, Ahu, Tapalang, Adang, Ampalas, Sumare, dan Labuhan Ranau berkomposisi andesit sampai basal leusit. Vulkanostratigrafi daerah ini disusun berdasarkan analisis struktur, geomorfologi, dan distribusi litologi. Vulkanostratigrafi daerah Mamuju diklasifikasikan ke dalam Khuluk Talaya dan Khuluk Adang. Khuluk Talaya terdiri atas Gumuk Mambi, Gumuk Malunda, dan Gumuk Kalukku. Khuluk Mamuju terdiri atas Gumuk Botteng, Gumuk Ahu, Gumuk Tapalang, Gumuk Adang, Gumuk Ampalas, Gumuk Sumare, dan Gumuk Labuhan Ranau. Mamuju and its surrounding area are constructed mainly by volcanic rocks. Volcanoclastic sedimentary rocks and limestones are laid above the volcanic rocks. Volcanic activities create some unique morphologies such as craters, lava domes, and pyroclastic flow paths as their volcanic products. These products are identified from their circular features characters on Landsat-8 imagery. After geometric and atmospheric corrections had been done, a visual interpretation on Landsat-8 imagery was conducted to identify structure, geomorphology, and geological condition of the area. Regional geological structures show trend to southeast – northwest direction which is affects the formation of Adang volcano. Geomorphology of the area are classified into 16 geomorphology units based on their genetic aspects, i.e Sumare fault block ridge, Mamuju cuesta ridge, Adang eruption crater, Labuhan Ranau eruption crater, Sumare eruption crater, Ampalas volcanic cone, Adang lava dome, Labuhan Ranau intrusion hill, Adang pyroclastic flow ridge, Sumare pyroclastic flow ridge, Adang volcanic remnant hills, Malunda volcanic remnant hills, Talaya volcanic remnant hills, Tapalang karst hills, Mamuju alluvium plains, and Karampuang reef terrace plains. Based on the Landsat-8 imagery interpretation result and field confirmation, the geology of Mamuju area is divided into volcanic rocks and sedimentary rocks. There are two groups of volcanic rocks; Talaya complex and Mamuju complex. The Talaya complex consists of Mambi, Malunda, and Kalukku volcanic rocks with andesitic composition, while Mamuju complex consist of Botteng, Ahu, Tapalang, Adang, Ampalas, Sumare, danLabuhanRanau volcanic rocks with andesite to leucitic basalt composition. The volcanostratigraphy of Mamuju area was constructed based on its structure, geomorphology and lithology distribution analysis. Volcanostratigraphy of Mamuju area is classified into Khuluk Talaya and Khuluk Mamuju. The Khuluk Talaya consists of Gumuk Mambi, Gumuk Malunda, and Gumuk Kalukku, while Khuluk Mamuju consists of Gumuk Botteng, Gumuk Ahu, Gumuk Tapalang, Gumuk Adang, Gumuk Ampalas, Gumuk Sumare, and Gumuk Labuhan Ranau.



2010 ◽  
Vol 95 (2-3) ◽  
pp. 410-413 ◽  
Author(s):  
J.M. Karner ◽  
J.J. Papike ◽  
S.R. Sutton ◽  
P.V. Burger ◽  
C.K. Shearer ◽  
...  


2008 ◽  
Vol 43 (7) ◽  
pp. 1137-1146 ◽  
Author(s):  
J. FILIBERTO ◽  
A. H. TREIMAN ◽  
L. LE




2007 ◽  
Vol 44 (4) ◽  
pp. 565-581 ◽  
Author(s):  
Joseph P Hodych ◽  
Richard A Cox

It has been suggested that the rifting phase of Iapetus Ocean opening in Quebec involved a long-lived mantle plume centered near the Sutton Mountains whose dominant magmatism was first of continental flood basalt composition and later of ocean-island basalt (OIB) composition. We dated the Lac Matapédia and Mt. St.-Anselme basalts, which are thought to have originated from this plume and have dominant OIB-like composition. The U–Pb dating was done on individual zircon crystals using a laser ablation microprobe linked to an inductively coupled plasma – mass spectrometer. Zircons from two basalt flows at Lac Matapédia yielded ages of 565 ± 6 and 556 ± 5 Ma. Zircons from a basalt flow at Mt. St.-Anselme yielded an age of 550 ± 7 Ma. Although the basalts are allochthonous, these should be their ages of extrusion onto Laurentia, as shown by Grenvillian ages yielded by inherited zircons in both Lac Matapédia flows and by zircons in a granitic pebble from the Mt. St.-Anselme Formation. Our dating supports the hypothesis of a long-lived (~615 to ~550 Ma) Sutton Mountains mantle plume involved in Iapetus rifting. It does so by closing a possible gap of ~10 Ma between the end of flood basalt and the beginning of OIB magmatism, and by supporting ~540 (rather than ~570) Ma for the rift-to-drift transition in Quebec. Because plumes move slowly, this hypothesis implies that Laurentia moved slowly from ~615 to ~550 Ma. This is consistent with paleomagnetic evidence, although very rapid true polar wander at ~590 Ma may need to be invoked.



Sign in / Sign up

Export Citation Format

Share Document