The electrical resistivity structure of Archean to Tertiary lithosphere along 3200 km of SNORCLE profiles, northwestern Canada

2005 ◽  
Vol 42 (6) ◽  
pp. 1257-1275 ◽  
Author(s):  
Alan G Jones ◽  
Juanjo Ledo ◽  
Ian J Ferguson ◽  
Colin Farquharson ◽  
Xavier Garcia ◽  
...  

Magnetotelluric (MT) measurements to image the three-dimensional resistivity structure of the North American continent from an Archean core to a region of Tertiary assembly were recorded at almost 300 sites along 3200 km of profiles on the Lithoprobe Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) transect in northwestern Canada. At the largest scale, the MT results indicate significant lithospheric thickness variation, from 260 km at the southwest margin of the Slave craton to significantly < 100 km at the southwestern end of the SNORCLE transect in the Cordillera. At intermediate scale, the resistivity results allow broad terrane subdivisions to be made. Several anomalously conductive zones along the SNORCLE transect, in rocks ranging in age from Archean to Tertiary, are attributed to the introduction of either water or carbon into the crust and mantle during subduction processes. At the local scale, the MT data image two major faults crossing the study area, the Great Slave Lake shear zone and the Tintina Fault. The resistivity images show that both the Tintina Fault and Great Slave Lake shear zone form crustal-scale features, and that the Tintina Fault has a remarkably uniform resistivity signature over a 400 km strike length in the study area. Arguably the most controversial conclusion reached is that the MT data do not support the western extension of North American autochthonous basement suggested from interpretation of the seismic reflection data.

1998 ◽  
Vol 35 (5) ◽  
pp. 569-582 ◽  
Author(s):  
G Bellefleur ◽  
A J Calvert ◽  
M C Chouteau

We provide precise estimates of reflector orientations beneath the Archean Abitibi Subprovince, using two distinct approaches based on Lithoprobe seismic reflection data. In the first, we use the dip of reflections observed on intersecting profiles to establish the three-dimensional orientation of reflective structures. In the second, the strikes and dips of reflectors are estimated in the crooked parts of seismic reflection profiles by calculating a measure of coherency along the traveltime trajectories defined by a particular azimuth, dip, depth, and medium velocity. Mid-crustal reflectors define two areas with distinctive geometry: reflectors beneath the southern Abitibi belt are oppositely dipping, and convergent at depth, providing a V-shape aspect to the greenstone rocks; other reflectors beneath the northern Abitibi belt are, in general, subparallel, dipping at an average of 30° toward the north. These north-dipping reflectors are partly disrupted by a low-reflectivity zone, which is attributed to rocks of the Opatica Subprovince, located underneath the northern Abitibi belt. Lower-crustal reflectors have a similar, shallowly north-dipping orientation throughout the Abitibi Subprovince. The geometry of the reflectors recovered is consistent with the different tectonic histories proposed for the southern and northern Abitibi assemblages, until common deformation during a north-south shortening event. Attitudes recovered in the northern Abitibi belt are consistent with tectonic scenarios involving underthrusting of Abitibi middle and lower crustal terranes beneath the Opatica belt, whereas the oppositely dipping reflectors recovered in the middle crust beneath the southern Abitibi belt could be representative of a rifted volcanic arc environment.


2021 ◽  
Author(s):  
Eric Roots ◽  
Graham Hill ◽  
Ben M. Frieman ◽  
James A. Craven ◽  
Richard S. Smith ◽  
...  

&lt;p&gt;The role of melts and magmatic/metamorphic fluids in mineralization processes is well established. However, the role of crustal architecture in defining source and sink zones in the middle to lower crust remains enigmatic. Integration of three dimensional magnetotelluric (MT) modelling and seismic reflection data across the Archean Abitibi greenstone belt of the Superior Province, Canada, reveals a &amp;#8216;whole-of-crust&amp;#8217; mineralizing system and highlights the controls by crustal architecture on metallogenetic processes. Electrically conductive conduits in an otherwise resistive upper crust are coincident with truncations and offsets of seismic reflections that are mostly interpreted as major brittle-ductile fault zones. The spatial association between these features and low resistivity zones imaged in the 3D models suggest that these zones acted as pathways through which fluids and melts ascended toward the surface. At mid-crustal levels, these &amp;#8216;conduit&amp;#8217; zones connect to ~50 km long, north-south striking conductors, and are inferred to represent graphite and/or sulphide deposited from cooling fluids. At upper mantle to lower crustal depths, east-west trending conductive zones dominate and display shallow dips. The upper mantle features are broadly coincident with the surface traces of the major deformation zones with which a large proportion of the gold endowment is associated. We suggest that these deep conductors represent interconnected graphitic zones perhaps augmented by sulphides that are relicts from metamorphic fluid and melt emplacement associated primarily with the later stages of regional deformation. &amp;#160;Thus, from the combined MT and seismic data, we develop a crustal-scale architectural model that is consistent with existing geological and deformational models, providing constraints on the sources for and signatures of fluid and magma emplacement that resulted in widespread metallogenesis in the Abitibi Subprovince.&lt;/p&gt;


2005 ◽  
Vol 42 (4) ◽  
pp. 457-478 ◽  
Author(s):  
Alan G Jones ◽  
Juanjo Ledo ◽  
Ian J Ferguson

Magnetotelluric studies of the Trans-Hudson orogen over the last two decades, prompted by the discovery of a significant conductivity anomaly beneath the North American Central Plains (NACP), from over 300 sites yield an extensive database for interrogation and enable three-dimensional information to be obtained about the geometry of the orogen from southern North Dakota to northern Saskatchewan. The NACP anomaly is remarkable in its continuity along strike, testimony to along-strike similarity of orogenic processes. Where bedrock is exposed, the anomaly can be associated with sulphides that were metamorphosed during subduction and compression and penetratively emplaced deep within the crust of the internides of the orogen to the boundary of the Hearne margin. A new result from this compilation is the discovery of an anomaly within the upper mantle beginning at depths of ~80–100 km. This lithospheric mantle conductor has electrical properties similar to those for the central Slave craton mantle conductor, which lies directly beneath the major diamond-producing Lac de Gras kimberlite field. While the Saskatchewan mantle conductor does not directly underlie the Fort à la Corne kimberlite, which is associated with the Sask craton, the spatial correspondence is close.


2021 ◽  
Author(s):  
Hongdan Deng ◽  
Ken McClay

&lt;div&gt;Basement fault reactivation, and the growth, interaction, and linkage with new fault segments are fundamentally three-dimensional and critical for understanding the evolution of fault network development in sedimentary basins. This paper analyses the evolution of a complex, basement-involved extensional fault network on the Enderby Terrace on the eastern margin of the Dampier sub-basin, NW Shelf of Australia. A high-resolution, depth-converted, 3D seismic reflection data volume is used to show that multiphase, oblique extensional reactivation of basement-involved faults controlled the development of the fault network in the overlying strata. Oblique reactivation of the pre-existing faults initially led to the formation of overlying, en &amp;#233;chelon Late Triassic &amp;#8211; Middle Jurassic fault segments that, as WNW&amp;#8211;directed rifting progressed on the margin, linked by breaching of relay ramp to form two intersecting fault systems (F1 and F2-F4). Further reactivation in the Latest Jurassic &amp;#8211; Early Cretaceous (NNW&amp;#8211;SSE extension) produced an additional set of en &amp;#233;chelon fault arrays in the cover strata. The final fault network consists of main or principal faults and subordinate or splay faults, together with branch lines that link the various components. Our study shows that breaching of relay ramps and/or vertical linkages produces vertical and horizontal branch lines giving complex final fault geometries. We find that repeated activity of the basement-involved faults tends to form continuous and planar fault architectures that favor displacement transfer between the main constituent segments along strike and with depth.&lt;/div&gt;


1989 ◽  
Vol 26 (2) ◽  
pp. 305-321 ◽  
Author(s):  
François Marillier ◽  
Charlotte E. Keen ◽  
Glen S. Stockmal ◽  
Garry Quinlan ◽  
Harold Williams ◽  
...  

In 1986, 1181 km of marine seismic reflection data was collected to 18–20 s of two-way traveltime in the Gulf of St. Lawrence area. The seismic profiles sample all major surface tectono-stratigraphic zones of the Canadian Appalachians. They complement the 1984 deep reflection survey northeast of Newfoundland. Together, the seismic profiles reveal the regional three-dimensional geometry of the orogen.Three lower crustal blocks are distinguished on the seismic data. They are referred to as the Grenville, Central, and Avalon blocks, from west to east. The Grenville block is wedge shaped in section, and its subsurface edge follows the form of the Appalachian structural front. The Grenville block abuts the Central block at mid-crustal to mantle depths. The Avalon block meets the Central block at a steep junction that penetrates the entire crust.Consistent differences in the seismic character of the Moho help identify boundaries of the deep crustal blocks. The Moho signature varies from uniform over extended distances to irregular with abrupt depth changes. In places the Moho is offset by steep reflections that cut the lower crust and upper mantle. In other places, the change in Moho elevation is gradual, with lower crustal reflections following its form. In all three blocks the crust is generally highly reflective, with no distinction between a transparent upper crust and reflective lower crust.In general, Carboniferous and Mesozoic basins crossed by the seismic profiles overlie thinner crust. However, a deep Moho is found at some places beneath the Carboniferous Magdalen Basin.The Grenville block belongs to the Grenville Craton; the Humber Zone is thrust over its dipping southwestern edge. The Dunnage Zone is allochthonous above the opposing Grenville and Central blocks. The Gander Zone may be the surface expression of the Central block or may be allochthonous itself. There is a spatial analogy between the Avalon block and the Avalon Zone. Our profile across the Meguma Zone is too short to seismically distinguish this zone from the Avalon Zone.


2018 ◽  
Vol 477 (1) ◽  
pp. 223-240 ◽  
Author(s):  
D. M. Hodgson ◽  
H. L. Brooks ◽  
A. Ortiz-Karpf ◽  
Y. Spychala ◽  
D. R. Lee ◽  
...  

AbstractMany mass transport complexes (MTCs) contain up to kilometre-scale (mega)clasts encased in a debritic matrix. Although many megaclasts are sourced from the headwall areas, the irregular basal shear surfaces of many MTCs indicate that megaclast entrainment during the passage of flows into the deeper basin is also common. However, the mechanisms responsible for the entrainment of large blocks of substrate, and their influence on the longitudinal behaviour of the associated flows, have not been widely considered. We present examples of megaclasts from exhumed MTCs (the Neuquén Basin, Argentina and the Karoo Basin, South Africa) and MTCs imaged in three-dimensional seismic reflection data (Magdalena Fan, offshore Colombia and Santos Basin, offshore Brazil) to investigate these process–product interactions. We show that highly sheared basal surfaces are well developed in distal locations, sometimes extending beyond their associated deposit. This points to deformation and weakening of the substrate ahead of the flow, suggesting that preconditioning of the substrate by distributed shear ahead of, and to the side of, a mass flow could result in the entrainment of large fragments. An improved understanding of the interactions between flow evolution, seabed topography, and the entrainment and abrasion of megaclasts will help to refine estimates of run-out distances, and therefore the geohazard potential of submarine landslides.


Geophysics ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 3-22 ◽  
Author(s):  
J. H. Lofthouse ◽  
G. T. Bennett

In‐line arrays for both source and receiver have been implemented for marine seismic reflection data acquisition. The in‐line array dimensions (variable within limits) are considerably greater than any previously used system of which we are aware. The arrays were designed to attenuate extremely strong sea‐bottom multiples during the data acquisition phase. The source comprised 25 airguns arranged in five identical in‐line subarrays. Each subarray produced a signal of better than 6 barmeters acoustic intensity with a primary‐to‐bubble ratio of approximately 4.4 from guns totaling 297 cu in. When this source was delivered in 1973, it constituted the most powerful production airgun source for which we had seen calibration measurements. Receiver arrays were implemented by a “weighting‐mixing” box (which formed part of the DFS IV instrument), the input to which comprised 53 channels of data each from a 50 m live section in the streamer cable. Processing techniques which are complementary to the field procedures have been developed. Comparisons with “conventional” data (and such data processed to simulate field arrays) show significant improvements in “data quality” from the new field techniques, that is, the new data are easier to interpret geologically because interfering multiples have been attenuated relative to desired energy. Whilst the large outgoing signal amplitude will have made some contribution to the data quality, the major improvement is believed to result from the use of arrays in the recording phase. This system, first used for production in August 1973, was subsequently used successfully during recording of 17,000 km of offshore seismic data from Eastern Canada, the North Sea, and the Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document