scholarly journals Entrainment and abrasion of megaclasts during submarine landsliding and their impact on flow behaviour

2018 ◽  
Vol 477 (1) ◽  
pp. 223-240 ◽  
Author(s):  
D. M. Hodgson ◽  
H. L. Brooks ◽  
A. Ortiz-Karpf ◽  
Y. Spychala ◽  
D. R. Lee ◽  
...  

AbstractMany mass transport complexes (MTCs) contain up to kilometre-scale (mega)clasts encased in a debritic matrix. Although many megaclasts are sourced from the headwall areas, the irregular basal shear surfaces of many MTCs indicate that megaclast entrainment during the passage of flows into the deeper basin is also common. However, the mechanisms responsible for the entrainment of large blocks of substrate, and their influence on the longitudinal behaviour of the associated flows, have not been widely considered. We present examples of megaclasts from exhumed MTCs (the Neuquén Basin, Argentina and the Karoo Basin, South Africa) and MTCs imaged in three-dimensional seismic reflection data (Magdalena Fan, offshore Colombia and Santos Basin, offshore Brazil) to investigate these process–product interactions. We show that highly sheared basal surfaces are well developed in distal locations, sometimes extending beyond their associated deposit. This points to deformation and weakening of the substrate ahead of the flow, suggesting that preconditioning of the substrate by distributed shear ahead of, and to the side of, a mass flow could result in the entrainment of large fragments. An improved understanding of the interactions between flow evolution, seabed topography, and the entrainment and abrasion of megaclasts will help to refine estimates of run-out distances, and therefore the geohazard potential of submarine landslides.

1989 ◽  
Vol 26 (2) ◽  
pp. 305-321 ◽  
Author(s):  
François Marillier ◽  
Charlotte E. Keen ◽  
Glen S. Stockmal ◽  
Garry Quinlan ◽  
Harold Williams ◽  
...  

In 1986, 1181 km of marine seismic reflection data was collected to 18–20 s of two-way traveltime in the Gulf of St. Lawrence area. The seismic profiles sample all major surface tectono-stratigraphic zones of the Canadian Appalachians. They complement the 1984 deep reflection survey northeast of Newfoundland. Together, the seismic profiles reveal the regional three-dimensional geometry of the orogen.Three lower crustal blocks are distinguished on the seismic data. They are referred to as the Grenville, Central, and Avalon blocks, from west to east. The Grenville block is wedge shaped in section, and its subsurface edge follows the form of the Appalachian structural front. The Grenville block abuts the Central block at mid-crustal to mantle depths. The Avalon block meets the Central block at a steep junction that penetrates the entire crust.Consistent differences in the seismic character of the Moho help identify boundaries of the deep crustal blocks. The Moho signature varies from uniform over extended distances to irregular with abrupt depth changes. In places the Moho is offset by steep reflections that cut the lower crust and upper mantle. In other places, the change in Moho elevation is gradual, with lower crustal reflections following its form. In all three blocks the crust is generally highly reflective, with no distinction between a transparent upper crust and reflective lower crust.In general, Carboniferous and Mesozoic basins crossed by the seismic profiles overlie thinner crust. However, a deep Moho is found at some places beneath the Carboniferous Magdalen Basin.The Grenville block belongs to the Grenville Craton; the Humber Zone is thrust over its dipping southwestern edge. The Dunnage Zone is allochthonous above the opposing Grenville and Central blocks. The Gander Zone may be the surface expression of the Central block or may be allochthonous itself. There is a spatial analogy between the Avalon block and the Avalon Zone. Our profile across the Meguma Zone is too short to seismically distinguish this zone from the Avalon Zone.


2005 ◽  
Vol 42 (4) ◽  
pp. 403-419 ◽  
Author(s):  
Z Hajnal ◽  
J Lewry ◽  
D White ◽  
K Ashton ◽  
R Clowes ◽  
...  

A three-dimensional model of the regional crustal architecture of the western Trans-Hudson Orogen, based on the interpretation of 590 km of deep-sounding seismic reflection data and a comparable length of existing seismic reflection information, is presented. The seismic images identify the regional geometry of the basal detachment zone (Pelican thrust) that separates juvenile allochthonous terranes from the underlying Archean microcontinent (Sask craton). The Sask Craton is inferred to have a minimum spatial extent of over 100 000 km2 with an associated crustal root that extends for 200 km along strike. During terminal collision, complete convergence of the Rae–Hearne and Superior continental blocks was precluded by the presence of the Sask Craton, resulting in the preservation of anomalous amounts of oceanic and associated sedimentary juvenile material. Along regional tectonic strike, consistency of crustal structure across the Rae–Hearne margin – Reindeer zone boundary is established. Several phases of tectonic development, including multistage subduction and continent–continent collision, are inferred for the western margin of the orogen. A bright, shallow (2–3.5 s two-way traveltime) band of reflectivity (Wollaston Lake reflector) imaged over ~150 000 km2 area is inferred to be a large post-orogenic mafic intrusion. A highly reflective, well-defined and structurally disturbed Moho discontinuity is mapped throughout the western Trans-Hudson Orogen. The present-day crustal architecture of the western Trans-Hudson Orogen is described in terms of the tectonic evolution within the region.


2019 ◽  
Vol 34 (2) ◽  
Author(s):  
Hananto Kurnio ◽  
Tommy Naibaho ◽  
Catur Purwanto

his paper reviews submarine landslide potential in the eastern Indonesia by analyzing published and recently acquired bathymetric data and interpreting seismic reflection data. This review aims to study and invent hazards that might affect seafloor infrastructure construction such as optic cables, especially in the eastern Indonesia Region. The hazards were also recognized as source of tsunamis such as Palu Bay 2018 and Babi Island north of Flores Island in 1992. On the other hand, submarine landslide is a common process of basin fill sedimentation in the region. As blessed with many active volcanoes, it has 130 of total the world 400, Indonesia should aware of tsunami induced by volcanoes especially the ones closed to the sea. There are five active volcanoes frequently produce tsunami in historical times: Anak Krakatau, Sunda Strait; Makian, Maluku Province; Sangihe, Sulawesi; Teon and Nila, Banda Sea; and Iliwerung, Lembata Island, east Lesser Sunda Islands.Key words: submarine landslide, volcanic tsunami, seafloor infrastructure, eastern Indonesia Makalah ini menelaah potensi langsoran dasar laut di wilayah Timur Indonesia melalui analisis publikasi dan data batimetri yang baru diambil serta penafsiran data seismic refleksi. Tinjauan longsoran dasar laut dimaksudkan untuk mempelajari dan menginventarisasi bencana yang mungkin bisa mempengaruhi pembangunan infrastruktur dasar laut seperti halnya kabel optic, terutama di wilayah Timur Indonesia. Bencana tersebut telah dikenal sebagai sumber beberapa tsunami seperti Teluk Palu 2018 dan Pulau Babi utara Lombok di tahun 1992. Sebaliknya, longsoran dasar laut merupakan proses sedimentasi pengisian cekungan yang biasa terjadi di wilayah tersebut. Dikarunia akan gunungapi terbanyak di dunia, sebab memiliki 130 dari 400 dunia, Indonesia harus menyadari bahaya tsunami yang ditimbulkan oleh aktivitas gunungapi terutama yang dekat laut. Terdapat lima gunungapi aktif yang sering menghasilkan tsunami dalam sejarah: Anak Krakatau, Selat Sunda; Makian, Provinsi Maluku; Sangihe, Sulawesi; Teon dan Nila, Laut Banda; dan Iliwerung, Pulau Lembata, Nusa Tenggara Timur.Kata kunci: longsoran dasar laut, tsunami gunungapi, infrastruktur dasar laut, Wilayah Indonesia Timur


Geology ◽  
2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher A.-L. Jackson

Many igneous dikes do not reach the surface, instead triggering normal faulting and graben formation in overlying rock. The surface expression of these dike-induced faults provides important records of active and ancient diking. For example, surface measurements of graben half-widths have been used to estimate dike upper-tip depths by projecting faults straight downdip, whereas extension measured at the surface across dike-induced fault pairs (i.e., their cumulative heave) is considered a proxy for dike thickness. We use three-dimensional seismic reflection data to test how the surface expression of two buried dike-induced faults relates to dike geometry. The dike-induced faults are nonplanar, suggesting fault dips should not be assumed constant when using graben half-widths to estimate dike depth. Multiple displacement maxima occur across the dike-induced faults, but rarely at their lower or upper tips, suggesting they formed through linkage of isolated faults that nucleated between the dike and free surface. Fault heave is greatest where these subsurface displacement maxima occur, meaning the cumulative heave of the dike-induced fault pair measured at the syn-faulting free surface underestimates their total extension and poorly reflects dike thickness. Our results imply that at-surface analyses of dike-induced fault geometry cannot be used to estimate key dike parameters without a priori knowledge of fault structure and kinematics or host rock lithological variations.


1998 ◽  
Vol 35 (5) ◽  
pp. 569-582 ◽  
Author(s):  
G Bellefleur ◽  
A J Calvert ◽  
M C Chouteau

We provide precise estimates of reflector orientations beneath the Archean Abitibi Subprovince, using two distinct approaches based on Lithoprobe seismic reflection data. In the first, we use the dip of reflections observed on intersecting profiles to establish the three-dimensional orientation of reflective structures. In the second, the strikes and dips of reflectors are estimated in the crooked parts of seismic reflection profiles by calculating a measure of coherency along the traveltime trajectories defined by a particular azimuth, dip, depth, and medium velocity. Mid-crustal reflectors define two areas with distinctive geometry: reflectors beneath the southern Abitibi belt are oppositely dipping, and convergent at depth, providing a V-shape aspect to the greenstone rocks; other reflectors beneath the northern Abitibi belt are, in general, subparallel, dipping at an average of 30° toward the north. These north-dipping reflectors are partly disrupted by a low-reflectivity zone, which is attributed to rocks of the Opatica Subprovince, located underneath the northern Abitibi belt. Lower-crustal reflectors have a similar, shallowly north-dipping orientation throughout the Abitibi Subprovince. The geometry of the reflectors recovered is consistent with the different tectonic histories proposed for the southern and northern Abitibi assemblages, until common deformation during a north-south shortening event. Attitudes recovered in the northern Abitibi belt are consistent with tectonic scenarios involving underthrusting of Abitibi middle and lower crustal terranes beneath the Opatica belt, whereas the oppositely dipping reflectors recovered in the middle crust beneath the southern Abitibi belt could be representative of a rifted volcanic arc environment.


Geophysics ◽  
1981 ◽  
Vol 46 (1) ◽  
pp. 2-16 ◽  
Author(s):  
John A. McDonald ◽  
G. H. F. Gardner ◽  
J. S. Kotcher

The collection of areal seismic reflection data is becoming fairly routine. It is now generally realized that the solution of three‐dimensional (3-D) structural problems is only possible when the target has been adequately sampled and the data have been correctly migrated to produce an accurate image of the subsurface. However, many of our exploration prospects are associated with lithological changes or stratigraphic features rather than structural features. We show how areal seismic techniques can provide an added dimension in determining the extent of acoustic discontinuities in areas where the strata are generally flat.


Sign in / Sign up

Export Citation Format

Share Document