EXTENDED ARRAYS FOR MARINE SEISMIC ACQUISITION

Geophysics ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 3-22 ◽  
Author(s):  
J. H. Lofthouse ◽  
G. T. Bennett

In‐line arrays for both source and receiver have been implemented for marine seismic reflection data acquisition. The in‐line array dimensions (variable within limits) are considerably greater than any previously used system of which we are aware. The arrays were designed to attenuate extremely strong sea‐bottom multiples during the data acquisition phase. The source comprised 25 airguns arranged in five identical in‐line subarrays. Each subarray produced a signal of better than 6 barmeters acoustic intensity with a primary‐to‐bubble ratio of approximately 4.4 from guns totaling 297 cu in. When this source was delivered in 1973, it constituted the most powerful production airgun source for which we had seen calibration measurements. Receiver arrays were implemented by a “weighting‐mixing” box (which formed part of the DFS IV instrument), the input to which comprised 53 channels of data each from a 50 m live section in the streamer cable. Processing techniques which are complementary to the field procedures have been developed. Comparisons with “conventional” data (and such data processed to simulate field arrays) show significant improvements in “data quality” from the new field techniques, that is, the new data are easier to interpret geologically because interfering multiples have been attenuated relative to desired energy. Whilst the large outgoing signal amplitude will have made some contribution to the data quality, the major improvement is believed to result from the use of arrays in the recording phase. This system, first used for production in August 1973, was subsequently used successfully during recording of 17,000 km of offshore seismic data from Eastern Canada, the North Sea, and the Mediterranean.

Geophysics ◽  
1989 ◽  
Vol 54 (1) ◽  
pp. 122-126 ◽  
Author(s):  
R. J. J. Hardy ◽  
M. R. Warner ◽  
R. W. Hobbs

The many techniques that have been developed to remove multiple reflections from seismic data all leave remnant energy which can cause ambiguity in interpretation. The removal methods are mostly based on periodicity (e.g., Sinton et al., 1978) or the moveout difference between primary and multiple events (e.g., Schneider et al., 1965). They work on synthetic and selected field data sets but are rather unsatisfactory when applied to high‐amplitude, long‐period multiples in marine seismic reflection data acquired in moderately deep (700 m to 3 km) water. Differential moveout is often better than periodicity at discriminating between types of events because, while a multiple series may look periodic to the eye, it is only exactly so on zero‐offset reflections from horizontal layers. The technique of seismic event labeling described below works by returning offset information from CDP gathers to a stacked section by color coding, thereby discriminating between seismic reflection events by differential normal moveout. Events appear as a superposition of colors; the direction of color fringes indicates whether an event has been overcorrected or undercorrected for its hyperbolic normal moveout.


2017 ◽  
Vol 90 (2) ◽  
pp. 187-195
Author(s):  
A. I. Opara ◽  
C. C. Agoha ◽  
C. N. Okereke ◽  
U. P. Adiela ◽  
C. N. Onwubuariri ◽  
...  

2006 ◽  
Vol 43 (4) ◽  
pp. 433-446 ◽  
Author(s):  
Nathan Hayward ◽  
Mladen R Nedimović ◽  
Matthew Cleary ◽  
Andrew J Calvert

The eastern Juan de Fuca Strait is subject to long-term, north–south-oriented shortening. The observed deformation is interpreted to result from the northward motion of the Oregon block, which is being driven north by oblique subduction of the oceanic Juan de Fuca plate. Seismic data, acquired during the Seismic Hazards Investigation in Puget Sound survey are used, with coincident first-arrival tomographic velocities, to interpret structural variation along the Devil's Mountain fault zone in the eastern Juan de Fuca Strait. The Primary fault of the Devil's Mountain fault zone developed at the northern boundary of the Everett basin, during north–south-oriented Tertiary compression. Interpretation of seismic reflection data suggests that, based on their similar geometry including the large magnitude of pre-Tertiary basement offset, the Primary fault of the Devil's Mountain fault west of ~122.95°W and the Utsalady Point fault represent the main fault of the Tertiary Devil's Mountain fault zone. The Tertiary Primary fault west of ~122.95°W was probably kinematically linked to faults to the east (Utsalady Point, Devil's Mountain, and another to the south), by an oblique north–northeast-trending transfer zone or ramp. Left-lateral transpression controlled the Quaternary evolution of the Devil's Mountain fault zone. Quaternary Primary fault offsets are smaller to the east of ~122.95°W, suggesting that stress here was in part accommodated by the prevalent oblique compressional structures to the north. Holocene deformation has focussed on the Devil's Mountain, Utsalady Point, and Strawberry Point faults to the east of ~122.8° but has not affected the Utsalady Point fault to the west of ~122.8°W.


Sign in / Sign up

Export Citation Format

Share Document