Cambrian volcanism in Nova Scotia, Canada

1985 ◽  
Vol 22 (4) ◽  
pp. 599-606 ◽  
Author(s):  
J. B. Murphy ◽  
K. Cameron ◽  
J. Dostal ◽  
J. Duncan Keppie ◽  
A. J. Hynes

Cambrian volcanic rocks in Nova Scotia occur in small grabens or half grabens in the Avalon Zone (Composite Terrane) as part of a thin sequence of continental to shallow-marine Cambro-Ordovician rocks. In the northern Antigonish Highlands, the volcanic rocks occur mainly in the Lower Cambrian McDonalds Brook Group. In southern Cape Breton Island, they occur predominantly in the Middle Cambrian Bourinot Group. The chemistry of these volcanic rocks indicates that they are bimodal (basalts–rhyolites) and within plate. The basalts are alkalic in the Antigonish Highlands and tholeiitic in Cape Breton Island. The rising basaltic magma is postulated to have produced the felsic magma by anatexis of the crust. It is proposed that the Antigonish Highlands volcanic rocks erupted in a small pull-apart basin. A similar structural setting is probable in southern Cape Breton Island, but there the bounding faults are poorly exposed. These basins probably formed during a period of transpression in the last stages of the late Hadrynian Cadomian deformation.


1995 ◽  
Vol 69 (3) ◽  
pp. 475-495 ◽  
Author(s):  
Ed Landing

Lithostratigraphy and depositional and epeirogenic history of the upper Placentian Series (Cuslett-Fosters Point Formations of the Bonavista Group) and Branchian Series (Brigus Formation) are identical in the northern Antigonish Highlands; Cape Breton Island; and eastern Placentia Bay, southeastern Newfoundland. Preliminary evidence suggests that the lower Middle Cambrian is present in the field area. A unified, uppermost Precambrian–Lower Cambrian, formation- and member-level nomenclature is appropriate to Avalonian North America, and the stratigraphic nomenclature of southeastern Newfoundland is applied in northern mainland Nova Scotia.Latest Placentian shoaling and deposition of a peritidal carbonate lithosome and unconformable onlap of the trilobite-bearing Branchian Series occurred in shallow Avalonian shale basins from eastern Massachusetts to central England.Uppermost Placentian Series faunas are very diverse in the Fosters Point Formation. Limited similarities with the South Australian Lower Cambrian are indicated by the presence of Camenella sp. cf. C. reticulosa, Conotheca australiensis, and Hyptiotheca sp., but these forms do not contribute to highly resolved correlation.Twenty-eight taxa are illustrated from the upper Placentian and Branchian Series. Caveacus rectus n. gen. and sp., a phosphatic problematicum, is limited to the upper Placentian Series. The oldest, skeletalized, macrophagous predators are the Pseudoconodontida and the later appearing Protoconodontida (n. orders). The Pseudoconodontida includes the Protohertzinacea n. superfamily and Strictocorniculacea n. superfamily (with the Rhombocorniculidae and Strictocorniculidae n. families). Strictocorniculum vanallerum n. gen. and sp. is described. The tommotiid family Sunnaginiidae emend. includes Eccentrotheca, Sunnaginia, Kulparina, and Jayceia deltiformis n. gen. and sp.



1991 ◽  
Vol 65 (4) ◽  
pp. 570-595 ◽  
Author(s):  
Ed Landing

Latest Precambrian through Early Cambrian tectonic history and stratigraphy are comparable in southeastern Cape Breton Island and the western Placentia–Bonavista axis, southeastern Newfoundland. The lithostratigraphic nomenclature of southeastern Newfoundland is used for this interval in Cape Breton Island. Upper Precambrian volcanic rocks of the Forchu Group (=“Giant Lake Complex,’ designation abandoned) are unconformably overlain by uppermost Precambrian through lowest Cambrian strata termed the “Morrison River Formation’ (designation abandoned). This depositional sequence consists of three formations: 1) red beds through tidalites of the Rencontre Formation (to 279+ m; =“Kelvin Lake Formation,’ designation abandoned); 2) prodeltaic clastics of the Chapel Island Formation (to 260 m); and 3) macrotidal quartzites of the Random Formation (to 71 + m). Post-Random block faulting and 300 m of local erosion took place prior to onlap of the “MacCodrum Formation’ (abandoned). Siliciclastic mudstones of the lower “MacCodrum’ are re-assigned to the middle Lower Cambrian Bonavista Group. Sub-trilobitic faunas from the Bonavista Group include “Ladatheca’ cylindrica from the West Centre Cove Formation(?) and higher diversity faunas (23 species) in the Camenella baltica Zone of the Cuslett and Fosters Point Formations. Trilobite-bearing, upper Lower Cambrian (Branchian Series) strata (Brigus Formation, =upper “MacCodrum’ and overlying “Canoe Brook’ Formations) unconformably overlie the Placentian Series in Cape Breton Island, southeastern Newfoundland, Shropshire, and, probably, eastern Massachusetts. Correlations based on small shelly fossils indicate an earlier appearance of trilobites in Avalon than on the South China Platform. Twenty-six species are illustrated. Halkieria fordi n. sp., the conodont(?) “Rushtonites’ asiatica n. sp., and the zhijinitid(?) Samsanoffoclavus matthewi n. gen. and sp. are described. Ischyrinia? sp. may be the oldest ischyrinoid rostroconch.



1998 ◽  
Vol 135 (2) ◽  
pp. 171-181 ◽  
Author(s):  
J. D. KEPPIE ◽  
J. DOSTAL

Central Cape Breton Island in Nova Scotia, Canada, is host to ∼700–630 Ma felsic and associated mafic volcanic rocks that are relatively rare in other parts of the Avalon Composite Terrane, occurring elsewhere only in the Stirling Block of southern Cape Breton Island and in parts of eastern Newfoundland. The mafic rocks of central Cape Breton Island are typically intraplate tholeiitic basalts generated by melting of a garnet-bearing mantle source. They lack a continental trace element and εNd imprint although they were emplaced on continental crust; they resemble oceanic island basalts. Contemporaneous volcanism in the Stirling Block is calc-alkaline and formed in a volcanic arc setting. In the absence of evidence for an intervening trench complex or suture, it may be inferred that the central Cape Breton tholeiites formed in a back-arc setting relative to the Stirling Block. This rifting may represent the initial stages of separation of an Avalonian arc from western Gondwana. The arc rifted further between ∼630–610 Ma when the younger Antigonish-Cobequid back-arc basin formed. Subsequently, the extensional arc became convergent, telescoping the back-arc basin. Northwestward migration of calc-alkaline arc magmatism may be related to shallowing of the associated Benioff zone through time.



1997 ◽  
Vol 34 (2) ◽  
pp. 156-168 ◽  
Author(s):  
R. D. Dallmeyer ◽  
J. D. Keppie ◽  
R. D. Nance

Detrital muscovite from lowermost Cambrian sequences exposed in the Avalon Composite Terrane in Nova Scotia and New Brunswick record 40Ar/39Ar plateau ages of ca. 625–600 Ma. These are interpreted to date times of cooling in source areas. The regional distribution of coarse-grained detrital muscovite in Lower Cambrian rocks of Avalonian overstep sequences suggests a source region of dimensions considerably larger than any presently exposed in Appalachian segments of the Avalon Composite Terrane. Late Proterozoic tectonic reconstructions locate the Avalon Composite Terrane adjacent to northwestern South America, thereby suggesting a possible source within Late Proterozoic PanAfrican – Brasiliano orogens. Detrital muscovite from clastic sequences of the proximally derived, Lower Carboniferous (Tournaisian) Horton Group and the more distal Upper Carboniferous (Westphalian D – Stephanian) Pictou Group in Nova Scotia records 40Ar/39Ar spectra that define plateau ages of ca. 390–380 Ma (Horton Group) and and ca. 370 Ma (Pictou Group). Finer grained fractions from samples of the Horton Group display more internally discordant age spectra defining total-gas ages of ca. 397–395 Ma. A provenance for the finer muscovite may be found in southern Nova Scotia where Cambrian–Ordovician turbidites of the Meguma Group display a regionally developed micaceous cleavage of this age. The ca. 390–380 Ma detrital muscovites probably were derived from granite stocks presently exposed in proximal areas of northernmost Cape Breton Island. A more distal source for the ca. 370 Ma detrital muscovites in the Pictou Group is suggested by its original extensive distribution, although a local, possibly recycled, source may also have been present. The presence of only 400–370 Ma detrital muscovite suggests a rapidly exhumed orogenic source with characteristics similar to those of crystalline rocks presently exposed in the Cape Breton Highlands and (or) the Meguma Terrane.



2010 ◽  
Vol 46 (0) ◽  
pp. 95-126 ◽  
Author(s):  
David W.A. McMullin ◽  
Sandra M. Barr ◽  
Robert P. Raeside


Tectonics ◽  
1985 ◽  
Vol 4 (7) ◽  
pp. 629-651 ◽  
Author(s):  
Rex J. E. Johnson ◽  
Rob Van der Voo


2012 ◽  
Vol 49 (1) ◽  
pp. 289-307 ◽  
Author(s):  
Teodoro Palacios ◽  
Sören Jensen ◽  
Chris E. White ◽  
Sandra M. Barr

We present the first description of organic-walled microfossils from Cambrian strata of the Bourinot belt, central Cape Breton Island. Age-diagnostic acritarchs have been recovered from the Dugald and MacMullin formations and from probable levels within the upper part of the Eskasoni Formation, which permit detailed correlations with acritarch-based zones in Newfoundland and Spain. The assemblage of acritarchs from the Dugald Formation confirms earlier assignments to the early middle Cambrian eteminicus Zone, but it also indicates that the upper part of the formation belongs to the hicksi Zone of the Drumian Stage. Acritarchs from the MacMullin Formation provide the first biostratigraphic evidence that this unit extends into the forchhammeri Zone of the Guzhangian Stage. These acritarchs are present in the lower part of the MacMullin Formation, putting into question earlier identification of hicksi Zone trilobites in this unit and raising the possibility of an unconformity. The data from the Bourinot belt provide additional evidence for the biostratigraphic utility of acritarchs in the Cambrian Acado-Baltic province.



1964 ◽  
Vol 1 (3) ◽  
pp. 159-166 ◽  
Author(s):  
R. F. Cormier ◽  
A. M. Kelly

The Fisset Brook formation of sedimentary and volcanic rocks crops out in the Cheticamp area of Cape Breton Island, Nova Scotia. Its stratigraphic age has been determined as earliest Mississippian using spores contained in the sedimentary members. A rubidium–strontium age determination using whole-rock samples of the volcanic members has yielded an age of 349 ± 15 million years. This is in good agreement with age determinations elsewhere for the Devonian–Mississippian boundary. Similar rocks exposed to the east of Lake Ainslie, some thirty miles to the southwest, give an identical age, 348 ± 20 million years. These rocks are clearly correlative with the Fisset Brook formation. Mixed sedimentary and volcanic rocks in the Cape St. Lawrence area, some thirty miles to the northeast of Fisset Brook, appear to be significantly older, 462 ± 25 million years, and should be considered tentatively as Ordovician in age.





Sign in / Sign up

Export Citation Format

Share Document