Late Quaternary events in the Lethbridge area, Alberta

1989 ◽  
Vol 26 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Willem J. Vreeken

New observations in the Lethbridge area permit a more complete reconstruction of the landscape history in Late Wisconsinan and Holocene time. The plain of glacial Lake Macleod, the Lethbridge moraine, and the plain of glacial Lake Lethbridge became exposed in that order and in quick succession. Almost immediately thereafter, a discontinuous mantle of loess began to accumulate on those surfaces. The presence of Glacier Peak layer G or Manyberries tephra near the base of the loess indicates these events occurred just before 11 200 BP. The similarity of this chronology to that established for the older Green Lake end moraine in the Cypress Hills region and the fact that the younger Buffalo Lake moraine was formed before 11 000 BP indicate that deglaciation of southern Alberta proceeded very rapidly.The oldest buried paleosol observed near Lethbridge began to form shortly after 11 200 BP. Subsequently, and throughout the Holocene, intervals of loess deposition alternated with soil-forming intervals. At least six soil–landscape cycles occurred between 11 200 and 6800 BP (before the Mazama tephra was deposited), and at least five cycles occurred subsequently. Occurrences of postglacial loess more than 3 m thick are common. A column of 6.7 m of loess, including 12 paleosols, was observed at one site.

1972 ◽  
Vol 2 (02) ◽  
pp. 217-231 ◽  
Author(s):  
Eberhard Grüger

Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only.One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with muchPicea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees likeQuercus, Carya, andUlmusoccurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such asPicea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38°30′ lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundantArtemisiapollen indicates the existence of open vegetation and stands of deciduous trees,Picea, andPinus. True tundra may have existed north of the sites, but if so its pollen rain apparently is marked by pollen from nearby stands of trees. After the disappearance ofPinusandPiceaat about 14,000 BP (estimated!), there developed a mosaic of prairies and stands ofQuercus, Carya, and other deciduous tree genera (zone 5). This type of vegetation persisted until it was destroyed by cultivation during the 19th and 20th century. Major vegetational changes are not indicated in the pollen diagram for the late Wisconsinan and the Holocene.The dating of zones 1 and 2 is problematical because the sediments are beyond the14C range and because of the lack of stratigraphic evidence. The zones dated as Illinoian and Sangamonian could also represent just a Wisconsinan stadial and interstadial. This possibility, however, seems to be contradicted by the late glacial and interglacial character of the forest vegetation of that time.


1987 ◽  
Vol 24 (4) ◽  
pp. 741-751 ◽  
Author(s):  
H. George ◽  
W. A. Gorman ◽  
D. F. VanDine

Glacial stratigraphy and geomorphology of the bottom areas of the Elk Valley support the existence of one major ice advance, presumably during the late Wisconsinan. Its retreat probably occurred in two stages by orderly frontal withdrawal. Glacial Lake Elk, formed within the Elk Valley from meltwaters released by this glacier, was dammed initially by an ice plug from the Rocky Mountain Trench glacier at a point near Morrissey and subsequently less than 3 km upvalley from Elko. The lake drained in at least three stages.


2003 ◽  
Vol 60 (1) ◽  
pp. 110-122 ◽  
Author(s):  
Daniel R. Muhs ◽  
Thomas A. Ager ◽  
Josh Been ◽  
J. Platt Bradbury ◽  
Walter E. Dean

AbstractRecent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment.


2000 ◽  
Vol 37 (6) ◽  
pp. 849-861 ◽  
Author(s):  
E Kotler ◽  
C R Burn

Four late Quaternary cryostratigraphic units are recognized in the unconsolidated valley-bottom deposits of the Klondike area, Yukon Territory. Three of the units, in ice-rich, loessal sediments of pre-Wisconsinan or Wisconsinan age, collectively compose the King Solomon Formation. They are overlain by a Holocene organic unit. The units are distinguished by their cryostratigraphic characteristics and oxygen-isotope ratios of included ground ice. The basal unit is the Last Chance Creek Member, a pre-Late Wisconsinan deposit, containing preserved ice wedges δ18O ~ -28 to -26‰; δD ~ -225 to -209‰). The overlying Quartz Creek Member, a Late Wisconsinan unit, is dominated by organic-rich loess. Massive ice is noticeably absent, although the sediments are ice rich. The isotopic composition of ice in this unit is characteristic of full-glacial conditions (δ18O ~ -32 to -29‰; δD ~ -234 to -257‰). An abrupt change to warmer and wetter conditions at the end of glaciation, prior to the Holocene, is recorded by the ice-rich, colluviated Dago Hill Member (δ18O ~ -28 to -21‰; δD ~ -164 to -225‰), which began accumulating by 11.62 14C ka BP. Large ice wedges originate in this unit, and, in places, penetrate the underlying full-glacial sediments. Even higher δ18O and δD values occur for ice in the Holocene organic unit (δ18O ~ -25 to -20‰; δD ~ -164 to -189‰). The majority of the massive icy bodies in the King Solomon Formation are ice wedges, but pool ice and aggradational ice are also exposed, especially in the Dago Hill Member. Massive icy beds formed by groundwater intrusion into permafrost occur at the lower contact of the Quartz Creek Member.


1989 ◽  
Vol 26 (10) ◽  
pp. 1990-2002 ◽  
Author(s):  
Arnaud Héquette ◽  
Philip R. Hill

This paper describes the seismic stratigraphy of the Quaternary sediments on the inner shelf (< 20 m water depth) of the Canadian Beaufort Sea, seaward of the Tuktoyaktuk Peninsula. Two regional unconformities and three seismic sequences are defined from the high-resolution seismic records. The deeper sequence (sequence III) is characterized by large-scale cross-beds. This sequence has been correlated with the Tingmiark Sand lithostratigraphic unit, which was previously defined farther offshore and is thought to be a glaciofluvial unit deposited during lower-than-present sea-level conditions in the Late Wisconsinan. The lower boundary of the overlying sequence (sequence II) is an unconformity (u/c 2), interpreted as the pre-transgression land surface. Sequence II is discontinuous and consists of localized basin-fill and channel-fill units. Most of these are remnants of thermokarst lakes partially eroded during the Holocene transgression. This sequence is separated from the uppermost sequence (sequence I) by another unconformity (u/c 1), which is the shoreface erosion surface generated by the Holocene sea-level rise. Sequence I is composed of a transgressive sand sheet overlain, in deeper areas, by recent marine muds. Seaward of Hutchison Bay, a large subbottom depression within sequence III in interpreted as a Late Wisconsinan fluviatile channel. According to our seismic interpretation, the Tuk Phase morainal and glaciofluvial deposits existing onland on the Tuktoyaktuk Peninsula, previously assigned to the Early Wisconsinan, would be of Late Wisconsinan age.


2021 ◽  
pp. 1-15
Author(s):  
Catalina P. Tomé ◽  
S. Kathleen Lyons ◽  
Seth D. Newsome ◽  
Felisa A. Smith

Abstract The late Quaternary in North America was marked by highly variable climate and considerable biodiversity loss including a megafaunal extinction event at the terminal Pleistocene. Here, we focus on changes in body size and diet in Neotoma (woodrats) in response to these ecological perturbations using the fossil record from the Edwards Plateau (Texas) across the past 20,000 years. Body mass was estimated using measurements of fossil teeth and diet was quantified using stable isotope analysis of carbon and nitrogen from fossil bone collagen. Prior to ca. 7000 cal yr BP, maximum mass was positively correlated to precipitation and negatively correlated to temperature. Independently, mass was negatively correlated to community composition, becoming more similar to modern over time. Neotoma diet in the Pleistocene was primarily sourced from C3 plants, but became progressively more reliant on C4 (and potentially CAM) plants through the Holocene. Decreasing population mass and higher C4/CAM consumption was associated with a transition from a mesic to xeric landscape. Our results suggest that Neotoma responded to climatic variability during the terminal Pleistocene through changes in body size, while changes in resource availability during the Holocene likely led to shifts in the relative abundance of different Neotoma species in the community.


1980 ◽  
Vol 17 (1) ◽  
pp. 52-59 ◽  
Author(s):  
J. Dumanski ◽  
S. Pawluk ◽  
C. G. Vucetich ◽  
J. D. Lindsay

The loess derived soils of the Hinton district provide a record of soil formation for the entire postglacial period. Loess originates from the shorelines of Brûlé Lake and from the sandbars and braided channels of the Athabasca River.The geochronology of the loess, as established through the study of paleosols and volcanic ash beds, indicates that loess deposition was continual but irregular. Soil formation occurred contemporaneously with loess deposition, and varying soil morphologies were attributed to differing local rates of loess accumulation. There was no evidence for marked climatic change during the Holocene in the study area, but increased loess supply after 4000 years BP may reflect gradual change.


1986 ◽  
Vol 23 (11) ◽  
pp. 1700-1708 ◽  
Author(s):  
Denis A. St-Onge ◽  
Jean Lajoie

The late Quaternary olistostrome exposed in the lower Coppermine River valley fills a paleovalley that ranges in apparent width from 150 to 400 m and was cut into Precambrian bedrock before the last glaciation. The olistostrome is here named the Sleigh Creek Formation. The coarse fraction of the formation is matrix supported; beds are massive or reversely graded and have sharp, nonerosive contacts. These characteristics suggest deposition of the coarse fraction by debris flows. The olistostrome sequence is bracketed by, and wedged into, a marine rhythmite sequence, which indicates that deposition occurred in a marine environment.About 10 500 years BP glacier ice in the Coronation Gulf lowland dammed the valley to the south, which was occupied by glacial Lake Coppermine. Sediments accumulated in this lake in a 30 m thick, coarsening upward sequence ranging from glaciolacustrine rhythmites of silt and fine sand at the base to coarse sand alluvium, and deltaic gravels at the top. As the Coronation Gulf lowlands became ice free, the Coppermine River reoccupied its former drainage course to the north. The steep south to north gradient and rapid downcutting by the river through the glacial lake sediments produced unstable slope conditions. The resulting debris flows filled a bedrock valley network below the postglacial sea level, forming the diamicton sequence.The interpretation of the Sleigh Creek Formation raises questions concerning silimar diamicton deposits usually defined as "flowtills." More generally, the results of this study indicate that care must be used when attempting paleogeographic reconstructions of "glaciogenic" deposits in marine sequences in any part of the geologic record.


1993 ◽  
Vol 39 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Y. Yechieli ◽  
M. Magaritz ◽  
Y. Levy ◽  
U. Weber ◽  
U. Kafri ◽  
...  

AbstractA 34.5 m borehole, which was drilled near the Dead Sea coast (altitude -394 m) in the southern part of the fan delta of Wadi Zeelim, reveals the geological history of that area from the latest Pleistocene to present. The depositional time frame is based on six 14C dates and two U-Th dates. An erosional (or nondepositional) period is implied by the hiatus between 21,100 yr B.P. (U-Th age, depth 33 m) and 11,315 yr B.P. (14C age, depth 32 m). A subsequent arid phase is recorded by a 6.5-m-thick layer of halite; based on 14C dates this phase relates to the abrupt Younger Dryas cold period reported in temperate to polar regions. The fragility of the environment in this region is indicated by the fact that the region experienced such a severe, short aridification phase (less than 1000 yr), evidence of which is found widely in the desert fringes of the Middle East and North Africa. The aragonite found in most of the Holocene section indicates that the well site was covered by the lake for most of the Holocene. Exceptions are the intervals at 0-3 and 10-14 m depths which represent low stands of the lake.


Sign in / Sign up

Export Citation Format

Share Document