Rb–Sr age and geochemical distinctions between the Carboniferous tin-bearing Davis Lake complex and the Devonian South Mountain batholith, Meguma Terrane, Nova Scotia

1989 ◽  
Vol 26 (10) ◽  
pp. 2044-2061 ◽  
Author(s):  
Jean M. Richardson ◽  
Keith Bell ◽  
John Blenkinsop ◽  
David H. Watkinson

The Davis Lake complex (DLC), composed of biotite monzogranite, leucomonzogranite, and cassiterite–topaz greisen, hosts the East Kemptville tin mine in southwestern Nova Scotia. The DLC monzogranite contains glomeroporphyritic biotite with ilmenite and many rare-earth-element (REE) bearing accessory minerals, zircon-bearing quartz phenocrysts, and xenoliths of biotite granite. Primary muscovite is rare. Major- and trace-element geochemical trends indicate well-defined, but limited, magmatic differentiation trends. REE patterns of the least-evolved granites are flat and show a Ce/Yb ratio of 10.The DLC was previously considered cogenetic with the Devonian South Mountain batholith (SMB) on the basis of its location, lithologies, and similarities in major- and trace-element geochemistry. However, new Rb–Sr whole-rock isotopic data indicate an Rb–Sr date of 330 ± 7 Ma (mean square of weighted deviates (MSWD) = 2.8) for the DLC, implying that it is at least 35 Ma younger than the SMB. The initial 87Sr/86Sr ratio of 0.727 ± 0.004 is significantly higher than those for other Meguma Terrane granites and is the highest yet reported from Appalachian granitoid rocks. Rb–Sr data from biotite indicate open-system behaviour between 260 and 240 Ma and provide more evidence for previously documented tectonothermal events after 300 Ma in the Meguma Terrane.The peraluminous nature of the DLC, its high Rb/Sr and high 87Sr/86Sr ratios, high P, F, and Sn contents, low Ca and B contents, and high differentiation indices indicate that the complex was derived from a highly evolved felsic source. Geochemical distinctions indicate that the DLC is neither derived from nor cogenetic with the SMB. A more probable source for the DLC magma is a dehydrated felsic granulite from which a previous H2O-, B-, Cl-, and Zn-rich granitic magma (perhaps the SMB) had been extracted. Such a source is analogous to that postulated for A-type granites and topaz rhyolites.The DLC shows more similarities to the "stitching" Carboniferous Appalachian volatile- and metal-rich granites than to Devonian Meguma granites. Unlike most of these Appalachian plutons, which occur marginal to terrane boundaries and were probably crystallized from locally generated, anatectic magmas, the DLC was emplaced in the centre of the most-outboard Meguma Terrane, adjacent to the Tobiatic shear zone.

1989 ◽  
Vol 26 (1) ◽  
pp. 176-191 ◽  
Author(s):  
Georgia Pe-Piper ◽  
Bosko D. Loncarevic

Eight short drill cores have been examined from the continental shelf southwest of Nova Scotia. Four cores recovered granitoid rocks of two types. Ilmenite-bearing granitoid rocks petrographically and geochemically resemble granodiorites of the South Mountain Batholith and granites of the Seal Island Pluton. Magnetite-bearing granitoid rocks are also peraluminous but have no exact analogues onshore in Nova Scotia. Two cores recovered metamorphic rocks in a small area 50 km south of Seal Island. One consits of chlorite–muscovite–quartz schist, geochemically similar to rocks of the Halifax Formation. The second sampled epidote–chlorite–quartz schist similar to metavolcanic rocks of the White Rock Formation. One further core sampled quartzite, and another sampled a metavolcanic rock (possibly erratic).The regional extent of these lithotypes can be inferred from gravity and aeromagnetic data. Regional gravity data suggest the presence of a large granite body off southwestern Nova Scotia. In this area, magnetic anomalies are irregular, apparently reflecting the presence of magnetite-bearing granites. The layer-stripping method of analyzing the magnetic field shows that the area is underlain at depth by high magnetic anomalies. Large near-surface linear magnetic anomalies are used to map the extent of the volcanic rocks of the White Rock Formation. The area is cut by several northwest-trending faults that postdate Acadian folding but predate the earliest Jurassic magmatism of the Shelburne Dyke and North Mountain basalt. The unusual magnetic signature of the area off southwestern Nova Scotia may reflect a different basement; it is possible that Meguma rocks are thrust over the Avalon Terrane. Alternatively, it may be solely the result of magnetite-bearing granites. These granites may be related to a Permian thermal event in southwest Nova Scotia, and they have some petrographic similarity to young granites of the Piedmont Zone of South Carolina.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Kyaw Linn Zaw ◽  
Lucas Donny Setijadji ◽  
I Wayan Warmada ◽  
Koichiro Watanabe

Granitoid rock compositions from a range of tectonic environments are plotted on a multicationic diagram, based on major and trace element geochemistry and K-Ar dating. This shows that there is a different tectonic nature, rock affinity and suites. The basement granitoid rocks are ranging from diorite to granite composition. They appear to the products of crystallization differentiation of a calc-alkaline magma of island affinity and range to metaluminous granites, granodiorite and tonalite. The tectonic setting has two kinds which are subduction and post-subduction. The geochemical interpretation, origin and melting of mechanism and tectonic setting shows the types of granitoid are M and I-M type. The basement of granite and granodiorite are a segment of island arc that were happened the Sintang Intrusion as post subduction or syn-collision tectonic setting. Keywords: Petrogenetic, tectonic, affinity, Sintang Intrusion, Kalimantan


1997 ◽  
Vol 109 (10) ◽  
pp. 1279-1293 ◽  
Author(s):  
Keith Benn ◽  
Richard J. Horne ◽  
Daniel J. Kontak ◽  
Geoffrey S. Pignotta ◽  
Neil G. Evans

2016 ◽  
Author(s):  
Jennifer A. Laughlin ◽  
◽  
Joseph L. Wooden ◽  
A.P. Barth ◽  
John T. Shukle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document