The application of reflection seismology to the investigation of the geometry of near-surface units and faults in the Blake River Group, Abitibi Belt, Quebec

1992 ◽  
Vol 29 (9) ◽  
pp. 2038-2045 ◽  
Author(s):  
Erick Adam ◽  
Bernd Milkereit ◽  
Marianne Mareschal ◽  
Arthur E. Barnes ◽  
Claude Hubert ◽  
...  

Reprocessing of part of a Lithoprobe high-resolution seismic reflection line across the southern part of the Abitibi Belt has improved the imaging of shallow reflections and allowed correlation of the data with surface geology. Enhancement of early reflections was accomplished by focusing on the high-frequency content of the data. This improved resolution of reflections at two-way traveltime as early as 0.3 s and attenuated noise such as shear waves. The shallow reflections are interpreted as impedance contrasts at the contact between a metadiabase–diorite body and metavolcanics rocks. Offsets of the reflectors correlate with faults mapped at the surface and indicate a downdropped block, which may be of interest for mineral exploration.

2020 ◽  
Vol 92 (1) ◽  
pp. 287-300
Author(s):  
François Lavoué ◽  
Olivier Coutant ◽  
Pierre Boué ◽  
Laura Pinzon-Rincon ◽  
Florent Brenguier ◽  
...  

Abstract Trains are now recognized as powerful sources for seismic interferometry based on noise correlation, but the optimal use of these signals still requires a better understanding of their source mechanisms. Here, we present a simple approach for modeling train-generated signals inspired by early work in the engineering community, assuming that seismic waves are emitted by sleepers regularly spaced along the railway and excited by passing train wheels. Our modeling reproduces well seismological observations of tremor-like emergent signals and of their harmonic spectra. We illustrate how these spectra are modulated by wheel spacing, and how their high-frequency content is controlled by the distribution of axle loads over the rail, which mainly depends on ground stiffness beneath the railway. This is summarized as a simple rule of thumb that predicts the frequency bands in which most of train-radiated energy is expected, as a function of train speed and of axle distance within bogies. Furthermore, we identify two end-member mechanisms—single stationary source versus single moving load—that explain two types of documented observations, characterized by different spectral signatures related to train speed and either wagon length or sleeper spacing. In view of using train-generated signals for seismic applications, an important conclusion is that the frequency content of the signals is dominated by high-frequency harmonics and not by fundamental modes of vibrations. Consequently, most train traffic worldwide is expected to generate signals with a significant high-frequency content, in particular in the case of trains traveling at variable speeds that produce truly broadband signals. Proposing a framework for predicting train-generated seismic wavefields over meters to kilometers distance from railways, this work paves the way for high-resolution passive seismic imaging and monitoring at different scales with applications to near-surface surveys (aquifers, civil engineering), natural resources exploration, and natural hazard studies (landslides, earthquakes, and volcanoes).


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
D Garcia Iglesias ◽  
J.M Rubin Lopez ◽  
D Perez Diez ◽  
C Moris De La Tassa ◽  
F.J De Cos Juez ◽  
...  

Abstract Introduction The Signal Averaged ECG (SAECG) is a classical method forSudden Cardiac Death (SCD) risk assessment, by means of Late Potentials (LP) in the filtered QRS (fQRS)[1]. But it is highly dependent on noise and require long time records, which make it tedious to use. Wavelet Continuous Transform (WCT) meanwhile is easier to use, and may let us to measure the High Frequency Content (HFC) of the QRS and QT intervals, which also correlates with the risk of SCD [2,3]. Whether the HFC of the QRS and QT measured with the WCT is a possible subrogate of LP, has never been demonstrated. Objective To demonstrate if there is any relationship between the HFC measured with the WCT and the LP analyzed with the SAECG. Methods Data from 50 consecutive healthy individuals. The standard ECG was digitally collected for 3 consecutive minutes. For the WCT Analysis 8 consecutive QT complexes were used and for the SAECG Analysis all available QRS were used. The time-frequency data of each QT complex were collected using the WCT as previously described [3] and the Total, QRS and QT power were obtained from each patient. For the SAECG, bipolar X, Y and Z leads were used with a bidirectional filter at 40 to 250 Hz [1]. LP were defined as less than 0.05 z in the terminal part of the filtered QRS and the duration (SAECG LP duration) and root mean square (SAECG LP Content) of this LP were calculated. Pearson's test was used to correlate the Power content with WCT analysis and the LP in the SAECG. Results There is a strong correlation between Total Power and the SAECG LP content (r=0.621, p<0.001). Both ST Power (r=0.567, p<0.001) and QRS Power (r=0.404, p=0.004) are related with the SAECG LP content. No correlation were found between the Power content (Total, QRS or ST Power) and the SAECG LP duration. Also no correlation was found between de SAECG LP content and duration. Conclusions Total, QRS and ST Power measured with the WCT are good surrogates of SAECG LP content. No correlation were found between WCT analysis and the SAECG LP duration. Also no correlation was found between the SAECG LP content and duration. This can be of high interest, since WCT is an easier technique, not needing long recordings and being less affected by noise. Funding Acknowledgement Type of funding source: None


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. P61-P73 ◽  
Author(s):  
Lasse Amundsen ◽  
Ørjan Pedersen ◽  
Are Osen ◽  
Johan O. A. Robertsson ◽  
Martin Landrø

The source depth influences the frequency band of seismic data. Due to the source ghost effect, it is advantageous to deploy sources deep to enhance the low-frequency content of seismic data. But, for a given source volume, the bubble period decreases with the source depth, thereby degrading the low-frequency content. At the same time, deep sources reduce the seismic bandwidth. Deploying sources at shallower depths has the opposite effects. A shallow source provides improved high-frequency content at the cost of degraded low-frequency content due to the ghosting effect, whereas the bubble period increases with a lesser source depth, thereby slightly improving the low-frequency content. A solution to the challenge of extending the bandwidth on the low- and high-frequency side is to deploy over/under sources, in which sources are towed at two depths. We have developed a mathematical ghost model for over/under point sources fired in sequential and simultaneous modes, and we have found an inverse model, which on common receiver gathers can jointly perform designature and deghosting of the over/under source measurements. We relate the model for simultaneous mode shooting to recent work on general multidepth level array sources, with previous known solutions. Two numerical examples related to over/under sequential shooting develop the main principles and the viability of the method.


2017 ◽  
Vol 69 (11) ◽  
pp. 422
Author(s):  
Larisa G. Tereshchenko ◽  
Golriz Sedaghat ◽  
Ryan Gardner ◽  
Muammar Kabir ◽  
Beth Habecker

Sign in / Sign up

Export Citation Format

Share Document