Establishing past environmental conditions and tracking long-term environmental change in the Canadian Maritime provinces using lake sediments

2013 ◽  
Vol 21 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Jennifer B. Korosi ◽  
Brian K. Ginn ◽  
Brian F. Cumming ◽  
John P. Smol

Freshwater lakes in the Canadian Maritime provinces have been detrimentally influenced by multiple, often synergistic, anthropogenically-sourced environmental stressors. These include surface-water acidification (and a subsequent decrease in calcium loading to lakes); increased nutrient inputs; watershed development; invasive species; and climate change. While detailed studies of these stressors are often hindered by a lack of predisturbance monitoring information; in many cases, these missing data can be determined using paleolimnological techniques, along with inferences on the full extent of environmental change (and natural variability), the timing of changes, and linkages to probable causes for change. As freshwater resources are important for fisheries, agriculture, municipal drinking water, and recreational activities, among others, understanding long-term ecological changes in response to anthropogenic stressors is critical. To assess the impacts of the major water-quality issues facing freshwater resources in this ecologically significant region, a large number of paleolimnological studies have recently been conducted in Nova Scotia and southern New Brunswick. These studies showed that several lakes in southwestern Nova Scotia, especially those in Kejimkujik National Park, have undergone surface-water acidification (mean decline of 0.5 pH units) in response to local-source SO2 emissions and the long-range transport of airborne pollutants. There has been no measureable chemical or biological recovery since emission restrictions were enacted. Lakewater calcium (Ca) decline, a recently recognized environmental stressor that is inextricably linked to acidification, has negatively affected the keystone zooplankter Daphnia in at least two lakes in Nova Scotia (and likely more), with critical implications for aquatic food webs. A consistent pattern of increasing planktonic diatoms and scaled chrysophytes was observed in lakes across Nova Scotia and New Brunswick, suggesting that the strength and duration of lake thermal stratification has increased since pre-industrial times in response to warming temperatures (∼1.5 °C since 1870). These include three lakes near Bridgewater, Nova Scotia, that are among the last known habitat for critically endangered Atlantic whitefish (Coregonus huntsmani). Overall, these studies suggest that aquatic ecosystems in the Maritime Provinces are being affected by multiple anthropogenic stressors and paleolimnology can be effective for inferring the ecological implications of these stressors.

A model of long term acidification (magic) is applied to a range of catchments in Scotland that are subject to different pollution inputs and land uses. The simulated historical trends in pH are compared with data from palaeolimnological reconstructions undertaken at the same sites. Both techniques produce similar historical acidification trends and, with some exceptions, closely match observed present day pH. The magic model results indicate that pollution inputs and land-use, particularly afforestation, have significant effects on surface water acidification. Moreover, the model indicates that reversibility may be occurring at several sites. Reversibility of acidification is further explored by using the model in predictive mode under several scenarios for reduction deposition.


2007 ◽  
Vol 183 (1-4) ◽  
pp. 15-24 ◽  
Author(s):  
Brian K. Ginn ◽  
Laura J. Stewart ◽  
Brian F. Cumming ◽  
John P. Smol

2016 ◽  
Vol 21 (3) ◽  
pp. 115-124 ◽  
Author(s):  
Naoyuki Yamashita ◽  
Hiroyuki Sase ◽  
Tsuyoshi Ohizumi ◽  
Junichi Kurokawa ◽  
Toshimasa Ohara ◽  
...  

2017 ◽  
Vol 53 ◽  
pp. 017-062 ◽  
Author(s):  
Carmen Álvarez-Vázquez ◽  
Robert H. Wagner

As part of a larger project to revise the systematics of lower Westphalian floras of Nova Scotia and New Brunswick, the sphenopsid taxa are presently reviewed. We recognize 15 species, of which one, Annularia stopesiae, is new. Detailed synonymy lists allow a refinement of the stratigraphic and geographic ranges of these species. Scant attention has been paid previously to Canadian species in the European literature. For example, Annularia latifolia was described later from Europe as Annularia jongmansii. The identical composition of Westphalian floras from Canada and western Europe is striking.


Improvements in techniques of lake-sediment analysis over the last two decades have enabled palaeolimnologists to reconstruct changes in water acidity and atmospheric contamination with high resolution. In the Surface Water Acidification Project (SWAP) Palaeolimnology Programme these techniques have been used to trace the history of a range of specially selected study sites and to evaluate alternative causes for lake acidification. At the same time further improvements in some of the techniques, especially diatom analysis, have been made.


Sign in / Sign up

Export Citation Format

Share Document