Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence

2010 ◽  
Vol 67 (10) ◽  
pp. 1585-1595 ◽  
Author(s):  
Nina Overgaard Therkildsen ◽  
Einar Eg Nielsen ◽  
Douglas P. Swain ◽  
Jes Søe Pedersen

Worldwide, many commercial fish stocks have experienced dramatic declines due to overfishing. Such fisheries-induced population reductions could potentially erode the genetic diversity of marine fish populations. Based on analyses of DNA extracted from archived and contemporary samples, this paper compares the genetic variability at nine microsatellite loci in a Canadian population of Atlantic cod ( Gadus morhua ) over 80 years, spanning from before the fishery intensified to now when the population is at historically low abundance. Extensively validated genetic data from the temporally spaced samples were used to estimate the effective population size. Over the period, we observed no loss of either heterozygosity or allelic diversity. Several of the estimation methods applied could not distinguish the effective population size from infinity, and the lower 95% confidence limit on estimates was generally >500, suggesting that the effective population size is probably considerably larger than this. Hence, it appears that the southern Gulf of St. Lawrence cod stock has maintained genetic variability to sustain future evolution despite a dramatic population decline.

2019 ◽  
Vol 5 (6) ◽  
pp. eaav2461 ◽  
Author(s):  
Tony Kess ◽  
Paul Bentzen ◽  
Sarah J. Lehnert ◽  
Emma V. A. Sylvester ◽  
Sigbjørn Lien ◽  
...  

Chromosome structural variation may underpin ecologically important intraspecific diversity by reducing recombination within supergenes containing linked, coadapted alleles. Here, we confirm that an ancient chromosomal rearrangement is strongly associated with migratory phenotype and individual genetic structure in Atlantic cod (Gadus morhua) across the Northwest Atlantic. We reconstruct trends in effective population size over the last century and reveal declines in effective population size matching onset of industrialized harvest (after 1950). We find different demographic trajectories between individuals homozygous for the chromosomal rearrangement relative to heterozygous or homozygous individuals for the noninverted haplotype, suggesting different selective histories across the past 150 years. These results illustrate how chromosomal structural diversity can mediate fine-scale genetic, phenotypic, and demographic variation in a highly connected marine species and show how overfishing may have led to loss of biocomplexity within Northern cod stock.


1997 ◽  
Vol 54 (S1) ◽  
pp. 11-18 ◽  
Author(s):  
C M Herbinger ◽  
R W Doyle ◽  
C T Taggart ◽  
S E Lochmann ◽  
A L Brooker ◽  
...  

2011 ◽  
Vol 54 (1) ◽  
pp. 1-9
Author(s):  
L. Vostrý ◽  
Z. Čapková ◽  
J. Přibyl ◽  
B. Hofmanová ◽  
H. Vostrá Vydrová ◽  
...  

Abstract. In order to estimate effective population size, generation interval and the development of inbreeding coefficients (Fx) in three original breeds of cold-blooded horses kept in the Czech Republic: Silesian Noriker (SN), Noriker (N) and Czech-Moravian Belgian horse (CMB) all animals of the particular breeds born from 1990 to 2007 were analysed. The average values of generation interval between parents and their offspring were: 8.53 in SN, 8.88 in N and 8.56 in CMB. Average values of effective population size were estimated to be: 86.3 in SN, 162.3 in N and 104.4 in CMB. The average values of inbreeding coefficient were 3.13 % in SN stallions and 3.39 % in SN mares, in the N breed 1.76 % and 1.26 % and in the CMB breed 3.84 % and 3.26 % respectively. Overall averages of Fx were: 3.23 %, 1.51 % and 3.55 % for the breeds SN, N and CMB. The average value of inbreeding coefficient Fx increased by 1.22 % in SN, by 0.35 % in N and by 1.01 % in CMB, respectively. This may lead to a reduction in genetic variability. Reduction in genetic variability could be either controlled in cooperation with corresponding populations of cold-blooded breeds in other European countries or controlled by number of sires used in population


Genetics ◽  
1977 ◽  
Vol 86 (3) ◽  
pp. 697-713
Author(s):  
C Chevalet ◽  
M Gillois ◽  
R F Nassar

ABSTRACT Properties of identity relation between genes are discussed, and a derivation of recurrent equations of identity coefficients in a random mating, diploid dioecious population is presented. Computations are run by repeated matrix multiplication. Results show that for effective population size (Ne) larger than 16 and no mutation, a given identity coefficient at any time t can be expressed approximately as a function of (1—f), (1—f)3 and (1—f)6, where f is the mean inbreeding coefficient at time t. Tables are presented, for small Ne values and extreme sex ratios, showing the pattern of change in the identity coefficients over time. The pattern of evolution of identity coefficients is also presented and discussed with respect to N eu, where u is the mutation rate. Applications of these results to the evolution of genetic variability within and between inbred lines are discussed.


1984 ◽  
Vol 44 (3) ◽  
pp. 321-341 ◽  
Author(s):  
P. J. Avery

SUMMARYFrom the available electrophoretic data, it is clear that haplodiploid insects have a much lower level of genetic variability than diploid insects, a difference that is only partially explained by the social structure of some haplodiploid species. The data comparing X-linked genes and autosomal genes in the same species is much more sparse and little can be inferred from it. This data is compared with theoretical analyses of X-linked genes and genes in haplodiploids. (The theoretical population genetics of X-linked genes and genes in haplodiploids are identical.) X-linked genes under directional selection will be lost or fixed more quickly than autosomal genes as selection acts more directly on X-linked genes and the effective population size is smaller. However, deleterious disease genes, maintained by mutation pressure, will give higher disease incidences at X-linked loci and hence rare mutants are easier to detect at X-linked loci. Considering the forces which can maintain balanced polymorphisms, there are much stronger restrictions on the fitness parameters at X-linked loci than at autosomal loci if genetic variability is to be maintained, and thus fewer polymorphic loci are to be expected on the X-chromosome and in haplodiploids. However, the mutation-random drift hypothesis also leads to the expectation of lower heterozygosity due to the decrease in effective population size. Thus the theoretical results fit in with the data but it is still subject to argument whether selection or mutation-random drift are maintaining most of the genetic variability at X-linked genes and genes in haplodiploids.


2006 ◽  
Vol 63 (8) ◽  
pp. 1830-1839 ◽  
Author(s):  
David C Hardie ◽  
Roxanne M Gillett ◽  
Jeffrey A Hutchings

The genetic consequences of extended periods at low population size are fundamental to the conservation of depleted species such as the Atlantic cod (Gadus morhua). We compared microsatellite genetic variability among cod populations in Canadian Arctic lakes with that of Gilbert Bay resident and inshore cod from eastern Canada. The Arctic populations had the lowest genetic diversity and were the most strongly genetically structured and distinct. By contrast, eastern Canadian samples expressed high allelic diversity and were not significantly genetically structured or distinct relative to each other, whereas Gilbert Bay resident cod were intermediate to the Arctic and eastern Canadian groups. Our results are consistent with the hypothesis that the Arctic populations were colonized between 8000 and 5000 years ago and have experienced little or no gene flow since that time. Despite isolation at the extreme of the species' range, the Arctic populations have retained relatively high heterozygosities and high genetic effective population sizes relative to census sizes (Ne–Nc ratios). Potential explanations for this include the absence of fishing pressure, allowing for the persistence of large, highly fecund individuals, as well as biotic (e.g., absence of planktivores) and abiotic (e.g., low environmental stochasticity) factors in the Arctic lakes that minimize individual variance in reproductive success.


2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


Sign in / Sign up

Export Citation Format

Share Document