A deathly odor suggests a new sustainable tool for controlling a costly invasive species

2011 ◽  
Vol 68 (7) ◽  
pp. 1157-1160 ◽  
Author(s):  
C. Michael Wagner ◽  
Eric M. Stroud ◽  
Trevor D. Meckley

Here we confirm a long-standing anecdotal observation; the sea lamprey ( Petromyzon marinus ) actively avoids the odor emitted by decaying conspecifics. We extracted the semiochemical mixture produced by the putrefying carcasses of sea lampreys via Soxhlet extraction in ethanol and exposed groups of 10 migratory-phase lampreys to either the putrefaction extract (N = 8) or an ethanol control (N = 8) in a laboratory raceway. Sea lampreys rapidly avoided the putrefaction odor while exhibiting no response to the ethanol control. This response was elicited with a diluted mixture (1:373 000) and was maintained for 40 min (the duration of exposure), after which the lampreys quickly returned to their nominal distribution. The ease with which this odor is obtained, and the rapid and consistent behavioral response, suggests the substance will prove useful as a repellent in the sea lamprey control program carried out in the Laurentian Great Lakes.


2011 ◽  
Vol 68 (3) ◽  
pp. 523-533 ◽  
Author(s):  
Lance A. Vrieze ◽  
Roger A. Bergstedt ◽  
Peter W. Sorensen

Stream-finding behavior of adult sea lamprey ( Petromyzon marinus ), an anadromous fish that relies on pheromones to locate spawning streams, was documented in the vicinity of an important spawning river in the Great Lakes. Untreated and anosmic migrating sea lampreys were implanted with acoustic transmitters and then released outside the Ocqueoc River. Lampreys swam only at night and then actively. When outside of the river plume, lampreys pursued relatively straight bearings parallel to the shoreline while making frequent vertical excursions. In contrast, when within the plume, lampreys made large turns and exhibited a weak bias towards the river mouth, which one-third of them entered. The behavior of anosmic lampreys resembled that of untreated lampreys outside of the plume, except they pursued a more northerly compass bearing. To locate streams, sea lampreys appear to employ a three-phase odor-mediated strategy that involves an initial search along shorelines while casting vertically, followed by river-water-induced turning that brings them close to the river’s mouth, which they then enter using rheotaxis. This novel strategy differs from that of salmonids and appears to offer this poor swimmer adaptive flexibility and suggests ways that pheromonal odors might be used to manage this invasive species.



2016 ◽  
Vol 26 (3) ◽  
pp. 509-535 ◽  
Author(s):  
Michael J. Hansen ◽  
Charles P. Madenjian ◽  
Jeffrey W. Slade ◽  
Todd B. Steeves ◽  
Pedro R. Almeida ◽  
...  


1980 ◽  
Vol 37 (11) ◽  
pp. 2108-2117 ◽  
Author(s):  
Lee H. Hanson ◽  
Patrick J. Manion

The sterility method of pest control could be an effective tool in the sea lamprey (Petromyzon marinus) control program in the Great Lakes. Some of the requirements for its successful application have been met. A field study demonstrated that the release of male sea lampreys, sterilized by the injection of 100 mg/kg of P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), will reduce the number of viable larvae produced. The actual reduction in reproductive success that occurred was directly related to the ratio of sterile to normal males in the population. The technique can be used in many ways in an integrated control program and has considerable potential for the more effective control of the sea lamprey. Eradication is a distinct possibility.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes



1980 ◽  
Vol 37 (11) ◽  
pp. 1861-1871 ◽  
Author(s):  
John W. Heinrich ◽  
Jerry G. Weise ◽  
Bernard R. Smith

Biological characteristics of adult sea lampreys, Petromyzon marinus, in the Great Lakes changed in response to lamprey and prey abundance and the chemical control program. Sea lampreys collected as early as 1947, through 1978, from southern Lake Superior, northwestern Lake Michigan, the Ocqueoc River and Canadian shore of Lake Huron, and the Humber River of Lake Ontario were analyzed. Generally, abundance of sea lampreys peaked in each lake before the chemical control program began. The annual mean lengths and weights were relatively low when lampreys were abundant and increased as the numbers were reduced by the control efforts. As an indication of the change in sea lamprey weight per unit change in length, annual log10 weight on log10 length equations were solved at the arbitrary length of 410 mm. The values were plotted against years for each lake and interpreted with respect to chemical treatment periods. All slopes were negative before the control period and positive thereafter. Sea lamprey lengths and weights were low when fish stocks in the Great Lakes were near depletion. As salmonids again became abundant through stocking, lampreys grew larger. In Lake Superior, where detailed records on lake trout abundance have been available since 1959, a significant relation exists between the changes in the sea lamprey estimated weight values at 410 mm and in lake trout abundance (P < 0.01). Male sea lampreys were the dominant sex when populations of the parasite were high. A shift to a preponderance of females occurred as lamprey abundance declined.Key words: Petromyzon marinus, Salvelinus namaycush, abundance, sex ratio, weight–length relationship, chemical control



1980 ◽  
Vol 37 (11) ◽  
pp. 1989-2006 ◽  
Author(s):  
Everett Louis King Jr.

Criteria for the classification of marks inflicted by sea lamprey (Petromyzon marinus) into nine categories were developed from laboratory studies in an attempt to refine the classification system used in field assessment work. These criteria were based on characteristics of the attachment site that could be identified under field conditions by unaided visual means and by touching the attachment site. Healing of these marks was somewhat variable and was influenced by the size of lamprey, duration of attachment, severity of the wound at lamprey detachment, season and water temperature, and by other less obvious factors. Even under laboratory conditions staging of some wounds was difficult, especially at low water temperatures. If these criteria are to be used effectively and with precision in the field, close examination of individual fish may be required. If the feeding and density of specific year-classes of sea lampreys are to be accurately assessed on an annual basis, close attention to the wound size (as it reflects the size of the lamprey's oral disc) and character of wounds on fish will be required as well as consideration of the season of the year in which they are observed.Key words: sea lamprey, attack marks, lake trout, Great Lakes



2008 ◽  
Vol 65 (2) ◽  
pp. 227-244 ◽  
Author(s):  
Luis Antonio Vélez-Espino ◽  
Robert L McLaughlin ◽  
Thomas C Pratt

We use matrix models incorporating uncertainty in values of life history traits and density-dependent survival to assess pest management strategies implemented by the Great Lakes Fishery Commission to control nonnative sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. The primary method of sea lamprey control has been treatment of rearing tributaries with chemical lampricides, but release of sterilized males and deployment of migratory barriers and traps are important components of the management plan. Uncertainties in the effectiveness of alternative control remain, however. Our models demonstrated that the management target of reducing lampricide use by 20% while maintaining current levels of control could be achieved if alternative methods are used to suppress current lake-wide fecundity rates by 49%–65%, assuming equal lampricide efficiency on larvae and metamorphosing individuals, or by 42%–55% when lampricide mortality on larvae is assumed to be half of that on metamorphosing individuals. At current levels of lampricide use, reduction to 72%–88% of current fecundity rates is recommended to ensure long-term control of sea lamprey populations in the face of uncertainty in current estimates of population growth rates. New control options targeting additional vital rates, such as survival of the parasitic life stage, could further reduce reliance on lampricides while maintaining effective sea lamprey control.



2015 ◽  
Vol 72 (12) ◽  
pp. 1876-1885 ◽  
Author(s):  
Adrienne R. McLean ◽  
Jessica Barber ◽  
Gale Bravener ◽  
Andrew M. Rous ◽  
Robert L. McLaughlin

Invasive sea lampreys (Petromyzon marinus) in the Laurentian Great Lakes are the target of binational control. Trapping of adults could be used for control if trap success was higher. At a hydro-generating station on the St. Marys River, we tested whether the probability of trap entry is low (0.2–0.3) because (i) lampreys spend insufficient time near traps to find and enter the trap, (ii) high discharge at trap sites makes attractant flow from traps difficult to detect or trap openings difficult to reach, and (iii) conspecifics impede trap entry. Discharge at the site was manipulated nightly, and the behaviour of lampreys at trap openings was video-recorded. Odds of a lamprey reaching a trap opening and entering the trap were 3.4 and 1.6 times higher, respectively, with every second spent at a trap. The probability of reaching a trap was not lower on nights when discharge was high or when conspecifics were present at the trap opening. Improved trap entry will require manipulation of stimuli other than discharge that affect the time spent at traps.



1980 ◽  
Vol 37 (11) ◽  
pp. 1895-1905 ◽  
Author(s):  
P. A. Gllderhus ◽  
B. G. H. Johnson

The chemicals 3-trifluoromethyl-4-nitrophenol (TFM) or a combination of TFM and 2′,5-dichloro-4′-nitrosalicylanilide (Bayer 73) have been used to control the sea lamprey (Petromyzon marinus) in the Great Lakes for about 20 yr. These chemicals cause some mortalities of Oligochaeta and Hirudinea, immature forms of Ephemeroptera (Hexagenia sp.), and certain Trichoptera, Simuliidae, and Amphibia (Necturus sp.). The combination of TFM and Bayer 73 may affect some Pelecypoda and Gastropoda, but its overall effects on invertebrates are probably less than those of TFM alone. Granular Bayer 73 is likely to induce mortalities among oligochaetes, microcrustaceans, chironomids, and pelecypods. No evidence exists that the lampricides have caused the catastrophic decline or disappearance of any species. The overall impact of chemical control of sea lampreys on aquatic communities has been minor compared with the benefits derived.Key words: sea lamprey control, Great Lakes, TFM, Bayer 73, aquatic plants, invertebrates, amphibians



1980 ◽  
Vol 37 (11) ◽  
pp. 2193-2196 ◽  
Author(s):  
A. H. Lawrie

A task force of participants convened during the course of the Sea Lamprey International Symposium considered the implications, for management of Great Lakes fisheries, of information provided about known interactions between feeding sea lampreys and the stocks of fish on which they prey. A weighted series of recommendations identified the need for more information or for changes in management practice.Key words: sea lamprey, Great Lakes, Finger Lakes, fishery management, stock concept



Sign in / Sign up

Export Citation Format

Share Document