Spring Transition Period in Lake Ontario — A Numerical Study of the Causes of the Large Biological and Chemical Gradients

1980 ◽  
Vol 37 (5) ◽  
pp. 823-833 ◽  
Author(s):  
Donald Scavia ◽  
John R. Bennett

A two-dimensional model that calculates physical transport, as well as in situ biological and chemical transformations, accurately simulates observations made along a north–south transect in Lake Ontario during April–June 1972. Simulation results show that, during the transition period between spring and summer, the inshore–offshore structure of biological and chemical distributions is controlled by the interaction of in situ processes and differences in vertical mixing on either side of the 4° isotherm. Owing to reversals in flow patterns, the effect of advection is to reduce concentration gradients, but the effect on overall distributions is minimal. An analysis of sinking losses in one- and two-dimensional models indicates that the artificially low sinking rates used in one-dimensional models of the Great Lakes result from the neglect of upwelling.Key words: Lake Ontario; model, hydrodynamic, ecological; sinking, upwelling, convection cells, chemical distributions

1987 ◽  
Vol 44 (12) ◽  
pp. 2144-2154 ◽  
Author(s):  
M. Putt ◽  
G. P. Harris ◽  
R. L. Cuhel

Measurement of 1-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) enhanced fluorescence (FDCMU) suggested that photoinhibition of photosynthesis was frequently an artifact of in situ bottle incubations in Lake Ontario phytoplankton. In a seasonal study, FDCMU of all populations was depressed by bright light in an incubator. However, when the euphotic zone did not exceed the depth of the mixed layer, vertical transport of phytoplankton into either low-light or dark regions apparently allowed reversal of photoinhibition of FDCMU. Advantages of FDCMU as a bioassay of vertical mixing include rapidity of response time, ease of measurement in the field, and insensitivity of this parameter to changes in phosphorus status of the population. Because of seasonal changes in the photoadaptive response of natural populations, the rate constants and threshold light levels required to cause the response must be determined at each use if the method is to be quantitative.


2004 ◽  
Vol 22 (10) ◽  
pp. 3741-3749 ◽  
Author(s):  
A. Gonzalez-Esparza ◽  
A. Santillán ◽  
J. Ferrer

Abstract. We studied the heliospheric evolution in one and two dimensions of the interaction between two ejecta-like disturbances beyond the critical point: a faster ejecta 2 overtaking a previously launched slower ejecta 1. The study is based on a hydrodynamic model using the ZEUS-3-D code. This model can be applied to those cases where the interaction occurs far away from the Sun and there is no merging (magnetic reconnection) between the two ejecta. The simulation shows that when the faster ejecta 2 overtakes ejecta 1 there is an interchange of momentum between the two ejecta, where the leading ejecta 1 accelerates and the tracking ejecta 2 decelerates. Both ejecta tend to arrive at 1AU having similar speeds, but with the front of ejecta 1 propagating faster than the front of ejecta 2. The momentum is transferred from ejecta 2 to ejecta 1 when the shock initially driven by ejecta 2 passes through ejecta 1. Eventually the two shock waves driven by the two ejecta merge together into a single stronger shock. The 2-D simulation shows that the evolution of the interaction can be very complex and there are very different signatures of the same event at different viewing angles; however, the transferring of momentum between the two ejecta follows the same physical mechanism described above. These results are in qualitative agreement with in-situ plasma observations of "multiple magnetic clouds" detected at 1AU.


2011 ◽  
Vol 43 (4) ◽  
pp. 882-888 ◽  
Author(s):  
Pengfei Wang ◽  
Yuliya Semenova ◽  
Jie Zheng ◽  
Qiang Wu ◽  
Agus Muhamad Hatta ◽  
...  

PIERS Online ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 305-307 ◽  
Author(s):  
Jie Xu ◽  
Ping Chen ◽  
Yue Shi ◽  
Xin-Yi Ji ◽  
Ai-Min Jiang ◽  
...  

2017 ◽  
Author(s):  
Varun Bheemireddy

The two-dimensional(2D) materials are highly promising candidates to realise elegant and e cient transistor. In the present letter, we conjecture a novel co-planar metal-insulator-semiconductor(MIS) device(capacitor) completely based on lateral 2D materials architecture and perform numerical study of the capacitor with a particular emphasis on its di erences with the conventional 3D MIS electrostatics. The space-charge density features a long charge-tail extending into the bulk of the semiconductor as opposed to the rapid decay in 3D capacitor. Equivalently, total space-charge and semiconductor capacitance densities are atleast an order of magnitude more in 2D semiconductor. In contrast to the bulk capacitor, expansion of maximum depletion width in 2D semiconductor is observed with increasing doping concentration due to lower electrostatic screening. The heuristic approach of performance analysis(2D vs 3D) for digital-logic transistor suggest higher ON-OFF current ratio in the long-channel limit even without third dimension and considerable room to maximise the performance of short-channel transistor. The present results could potentially trigger the exploration of new family of co-planar at transistors that could play a signi significant role in the future low-power and/or high performance electronics.<br>


2021 ◽  
Author(s):  
Yijuan Wang ◽  
Jianzhi Wang ◽  
Jie Liu ◽  
Zhuangwei Xiao ◽  
Yanan Xue ◽  
...  

A rigid segment-containing polysulfide was used as a sulfur source and in situ intercalator to induce the formation of few-layer and 1T-rich MoS2.


Sign in / Sign up

Export Citation Format

Share Document