Photoinhibition of DCMU-Enhanced Fluorescence in Lake Ontario Phytoplankton

1987 ◽  
Vol 44 (12) ◽  
pp. 2144-2154 ◽  
Author(s):  
M. Putt ◽  
G. P. Harris ◽  
R. L. Cuhel

Measurement of 1-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) enhanced fluorescence (FDCMU) suggested that photoinhibition of photosynthesis was frequently an artifact of in situ bottle incubations in Lake Ontario phytoplankton. In a seasonal study, FDCMU of all populations was depressed by bright light in an incubator. However, when the euphotic zone did not exceed the depth of the mixed layer, vertical transport of phytoplankton into either low-light or dark regions apparently allowed reversal of photoinhibition of FDCMU. Advantages of FDCMU as a bioassay of vertical mixing include rapidity of response time, ease of measurement in the field, and insensitivity of this parameter to changes in phosphorus status of the population. Because of seasonal changes in the photoadaptive response of natural populations, the rate constants and threshold light levels required to cause the response must be determined at each use if the method is to be quantitative.

1980 ◽  
Vol 37 (5) ◽  
pp. 823-833 ◽  
Author(s):  
Donald Scavia ◽  
John R. Bennett

A two-dimensional model that calculates physical transport, as well as in situ biological and chemical transformations, accurately simulates observations made along a north–south transect in Lake Ontario during April–June 1972. Simulation results show that, during the transition period between spring and summer, the inshore–offshore structure of biological and chemical distributions is controlled by the interaction of in situ processes and differences in vertical mixing on either side of the 4° isotherm. Owing to reversals in flow patterns, the effect of advection is to reduce concentration gradients, but the effect on overall distributions is minimal. An analysis of sinking losses in one- and two-dimensional models indicates that the artificially low sinking rates used in one-dimensional models of the Great Lakes result from the neglect of upwelling.Key words: Lake Ontario; model, hydrodynamic, ecological; sinking, upwelling, convection cells, chemical distributions


2019 ◽  
Author(s):  
Hind Saeed Alzahrani ◽  
Sieu K. Khuu ◽  
Adiba Ali ◽  
Maitreyee Roy

AbstractThe selective reduction in visible wavelengths transmitted through commercially available blue-blocking lenses (BBLs) is known to influence the appearance and contrast detection of objects, particularly at low light levels which may impact the human retinal receptor response time to dynamic light changes during phostress events. In the present study, we assessed whether BBLs selectively affect photostress recovery times (PSRTs) in 12 participants for chromatic and achromatic stimuli presented under low and high contrast luminance conditions. Four types of commercially available BBLs were evaluated, and their effects on PSRTs were investigated. Our results showed that PSRTs required to detect high contrast chromatic and achromatic stimuli were unaffected by BBLs when compared to a clear control lens. However, PSRTs were significantly affected by BBLs and were longer when chromatic and achromatic stimuli were of low contrast. In addition, BBLs had the greatest impact on the PSRTs of blue coloured targets, and this was dependent on the spectral transmittance profile. These results indicate that wearing BBLs under low contrast conditions can have serious implications for visual behavior, particularly under low-light levels and in situations in which the observer is directly exposed to bright light sources. For example, during night time driving, the driver might be briefly exposed to bright lights by glancing at the headlights of a passing car. This increases the time required for vision to be restored after bright light exposure, resulting in delayed object detection, and therefore stoppage and reaction times, which might pose a safety risk for a driver.


1997 ◽  
Vol 75 (9) ◽  
pp. 1424-1435 ◽  
Author(s):  
D. Mailly ◽  
J. P. Kimmins

Silvicultural alternatives that differ in the degree of overstory removal may create shady environments that will be problematic for the regeneration of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Gradients of light in the field were used to compare mortality, growth, and leaf morphological acclimation of two conifer species of contrasting shade tolerances: Douglas-fir and western hemlock (Tsuga heterophylla (Raf.) Sarg.). Results after two growing seasons indicated that Douglas-fir mortality occurred mainly at relative light intensity (RLI) below 20%, while western hemlock mortality was evenly distributed along the light gradient. Height, diameter, and biomass of the planted seedlings increased with increasing light for both species but at different rates, and maximum biomass accumulation always occurred in the open. Douglas-fir allocated more resources to stem biomass than western hemlock, which accumulated more foliage biomass. Increases in specific leaf area for Douglas-fir seedlings occurred at RLI ≤ 0.4 and red/far red (R/FR) ratio ≤ 0.6, which appear to be the minimal optimum light levels for growth. Conversely, western hemlock seedlings adjusted their leaf morphology in a more regular pattern, and changes were less pronounced at low light levels. These results, along with early mortality results for Douglas-fir, suggest that the most successful way to artificially regenerate this species may be by allowing at least 20% of RLI for ensuring survival and at least 40% RLI for optimum growth. Key words: light, light quality, leaf morphology, acclimation.


2015 ◽  
Vol 15 (12) ◽  
pp. 7085-7102 ◽  
Author(s):  
N. L. Wagner ◽  
C. A. Brock ◽  
W. M. Angevine ◽  
A. Beyersdorf ◽  
P. Campuzano-Jost ◽  
...  

Abstract. Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2–3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while the second study speculates that the layer aloft could be SOA or secondary particulate sulfate. In contrast to these hypotheses, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.


1986 ◽  
Vol 3 (12) ◽  
pp. 2179 ◽  
Author(s):  
Miles N. Wernick ◽  
G. Michael Morris

Sign in / Sign up

Export Citation Format

Share Document